Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the features of the function [tex]\( f(x) \)[/tex] given the function [tex]\( g(x) = f(x+4) + 8 \)[/tex] with the following characteristics:
- [tex]\( g(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\((1,0)\)[/tex].
- The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept at [tex]\((0,10)\)[/tex].
- The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex].
We need to find:
1. The domain of [tex]\( f(x) \)[/tex].
2. The range of [tex]\( f(x) \)[/tex].
3. The [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
4. The [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
5. Any vertical asymptote of [tex]\( f(x) \)[/tex].
### Step-by-Step Solution
1. Domain of [tex]\( f(x) \)[/tex]:
The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], for [tex]\( g(x) \)[/tex] to be defined, [tex]\( x+4 \)[/tex] must be within the domain of [tex]\( f(x) \)[/tex].
[tex]\[ x + 4 > 4 \implies x > 0 \][/tex]
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\((0, \infty)\)[/tex].
2. Range of [tex]\( f(x) \)[/tex]:
The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], [tex]\( f(x+4) \)[/tex] must be equal to [tex]\( g(x) - 8 \)[/tex]. Therefore, for [tex]\( g(x) \geq 8 \)[/tex],
[tex]\[ f(x+4) \geq 8 - 8 \implies f(x+4) \geq 0 \][/tex]
Thus, the range of [tex]\( f(x) \)[/tex] is [tex]\([0, \infty)\)[/tex].
3. [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs when [tex]\( x = 0 \)[/tex], giving [tex]\((0, 10)\)[/tex]. At [tex]\( x = 0 \)[/tex],
[tex]\[ g(0) = f(0+4) + 8 = 10 \][/tex]
Therefore,
[tex]\[ f(4) + 8 = 10 \implies f(4) = 2 \][/tex]
Since [tex]\( f(0) \)[/tex] defines the [tex]\( y \)[/tex]-intercept, and we've substituted [tex]\( x+4 = 0 \implies x = -4 \)[/tex], the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\((0, 2)\)[/tex].
4. [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is given as [tex]\((1, 0)\)[/tex], meaning [tex]\( g(1) = 0 \)[/tex]. Therefore,
[tex]\[ g(1) = f(1 + 4) + 8 = 0 \][/tex]
Hence,
[tex]\[ f(5) + 8 = 0 \implies f(5) = -8 \quad (\text{which is inconsistent as } f(x) \geq 0) \][/tex]
Actual correction reveals [tex]\( x \)[/tex]-intercept when substitutive for understanding [tex]\( f \)[/tex]'s base intercepting zero according to revised domain transformations.
5. Vertical asymptote of [tex]\( f(x) \)[/tex]:
[tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex]:
\[
g(-4) = f((-4) + 4) + 8 \rightarrow f(0)\nenver resultant in proposing specific transformations\)
This infers: there is no vertical asymptote observed through [tex]\( f(x) \)[/tex] evaluation.
Thus, the function [tex]\( f(x) \)[/tex] has the following features:
- Domain: [tex]\((0, \infty)\)[/tex]
- Range: [tex]\([0, \infty)\)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]
- [tex]\( g(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\((1,0)\)[/tex].
- The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a [tex]\( y \)[/tex]-intercept at [tex]\((0,10)\)[/tex].
- The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex].
- [tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex].
We need to find:
1. The domain of [tex]\( f(x) \)[/tex].
2. The range of [tex]\( f(x) \)[/tex].
3. The [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
4. The [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex].
5. Any vertical asymptote of [tex]\( f(x) \)[/tex].
### Step-by-Step Solution
1. Domain of [tex]\( f(x) \)[/tex]:
The domain of [tex]\( g(x) \)[/tex] is [tex]\((4, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], for [tex]\( g(x) \)[/tex] to be defined, [tex]\( x+4 \)[/tex] must be within the domain of [tex]\( f(x) \)[/tex].
[tex]\[ x + 4 > 4 \implies x > 0 \][/tex]
Therefore, the domain of [tex]\( f(x) \)[/tex] is [tex]\((0, \infty)\)[/tex].
2. Range of [tex]\( f(x) \)[/tex]:
The range of [tex]\( g(x) \)[/tex] is [tex]\((8, \infty)\)[/tex]. Since [tex]\( g(x) = f(x+4) + 8 \)[/tex], [tex]\( f(x+4) \)[/tex] must be equal to [tex]\( g(x) - 8 \)[/tex]. Therefore, for [tex]\( g(x) \geq 8 \)[/tex],
[tex]\[ f(x+4) \geq 8 - 8 \implies f(x+4) \geq 0 \][/tex]
Thus, the range of [tex]\( f(x) \)[/tex] is [tex]\([0, \infty)\)[/tex].
3. [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] occurs when [tex]\( x = 0 \)[/tex], giving [tex]\((0, 10)\)[/tex]. At [tex]\( x = 0 \)[/tex],
[tex]\[ g(0) = f(0+4) + 8 = 10 \][/tex]
Therefore,
[tex]\[ f(4) + 8 = 10 \implies f(4) = 2 \][/tex]
Since [tex]\( f(0) \)[/tex] defines the [tex]\( y \)[/tex]-intercept, and we've substituted [tex]\( x+4 = 0 \implies x = -4 \)[/tex], the [tex]\( y \)[/tex]-intercept of [tex]\( f(x) \)[/tex] is [tex]\((0, 2)\)[/tex].
4. [tex]\( x \)[/tex]-intercept of [tex]\( f(x) \)[/tex]:
The [tex]\( x \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is given as [tex]\((1, 0)\)[/tex], meaning [tex]\( g(1) = 0 \)[/tex]. Therefore,
[tex]\[ g(1) = f(1 + 4) + 8 = 0 \][/tex]
Hence,
[tex]\[ f(5) + 8 = 0 \implies f(5) = -8 \quad (\text{which is inconsistent as } f(x) \geq 0) \][/tex]
Actual correction reveals [tex]\( x \)[/tex]-intercept when substitutive for understanding [tex]\( f \)[/tex]'s base intercepting zero according to revised domain transformations.
5. Vertical asymptote of [tex]\( f(x) \)[/tex]:
[tex]\( g(x) \)[/tex] has a vertical asymptote at [tex]\( x = -4 \)[/tex]:
\[
g(-4) = f((-4) + 4) + 8 \rightarrow f(0)\nenver resultant in proposing specific transformations\)
This infers: there is no vertical asymptote observed through [tex]\( f(x) \)[/tex] evaluation.
Thus, the function [tex]\( f(x) \)[/tex] has the following features:
- Domain: [tex]\((0, \infty)\)[/tex]
- Range: [tex]\([0, \infty)\)[/tex]
- [tex]\( y \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\((0, 2)\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.