Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

What is the difference of the polynomials?

[tex]\[ \left(x^4 + x^3 + x^2 + x\right) - \left(x^4 - x^3 + x^2 - x\right) \][/tex]

A. [tex]\(2x^2\)[/tex]

B. [tex]\(2x^3 + 2x\)[/tex]

C. [tex]\(x^6 + x^2\)[/tex]

D. [tex]\(2x^5 + 2x^2\)[/tex]


Sagot :

To find the difference between the two polynomials [tex]\( \left(x^4 + x^3 + x^2 + x\right) \)[/tex] and [tex]\( \left(x^4 - x^3 + x^2 - x\right) \)[/tex], we need to perform polynomial subtraction:

Step 1: Write down the given polynomials.

The first polynomial is:
[tex]\[ x^4 + x^3 + x^2 + x \][/tex]

The second polynomial is:
[tex]\[ x^4 - x^3 + x^2 - x \][/tex]

Step 2: Align the terms by their degrees and then subtract the second polynomial from the first.

[tex]\[ \begin{array}{r} \left(x^4 + x^3 + x^2 + x \right) \\ -\left(x^4 - x^3 + x^2 - x \right) \\ \end{array} \][/tex]

Step 3: Perform the subtraction term by term:

[tex]\[ \begin{array}{rl} x^4 \phantom{{}-{}} & - x^4 = 0 \\ x^3 \phantom{{}+{}} & - (- x^3) = x^3 + x^3 = 2x^3 \\ x^2 \phantom{{}-{}} & - x^2 = 0 \\ x \phantom{{}+{}} & - (- x) = x + x = 2x \\ \end{array} \][/tex]

Step 4: Combine the results:

[tex]\[ 0x^4 + 2x^3 + 0x^2 + 2x \][/tex]

So the equation simplifies to:

[tex]\[ 2x^3 + 2x \][/tex]

Therefore, the difference of the polynomials is:
[tex]\[ 2x^3 + 2x \][/tex]

Among the provided options, the correct one is:
[tex]\[ 2x^3 + 2x \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.