Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] for [tex]\(x\)[/tex] in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex], we will follow these steps:
1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].
Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]
So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]
3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.
- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.
- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].
Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]
So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
1. Solve the quadratic equation for [tex]\(\tan(x)\)[/tex]:
[tex]\[ t = \tan(x) \][/tex]
This simplifies the given equation to:
[tex]\[ t^2 + 2\sqrt{3}t + 3 = 0 \][/tex]
Here, we can solve for [tex]\(t\)[/tex] using the quadratic formula, [tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\sqrt{3}\)[/tex], and [tex]\(c = 3\)[/tex].
Substituting these values into the quadratic formula:
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{12 - 12}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3} \pm \sqrt{0}}{2} \][/tex]
[tex]\[ t = \frac{-2\sqrt{3}}{2} \][/tex]
[tex]\[ t = -\sqrt{3} \][/tex]
So, the solution for [tex]\(\tan(x)\)[/tex] is:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
2. Find the corresponding [tex]\(x\)[/tex] values in the range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
We need to find [tex]\(x\)[/tex] such that:
[tex]\[ \tan(x) = -\sqrt{3} \][/tex]
To find these values, we look for the arctangent (or inverse tangent) solutions and consider the periodicity of the tangent function. The basic solution for [tex]\(\tan(x) = -\sqrt{3}\)[/tex] within one period can be found using:
[tex]\[ x = \arctan(-\sqrt{3}) + k\pi \][/tex]
where [tex]\( k \)[/tex] is an integer. Specifically,
[tex]\[ \arctan(-\sqrt{3}) \approx -\frac{\pi}{3} \][/tex]
3. Adjust for the given range [tex]\(\pi \leq x \leq 2\pi\)[/tex]:
For the solutions to fall within [tex]\(\pi \leq x \leq 2\pi\)[/tex], we consider adding [tex]\( k\pi \)[/tex] to our arctan solution from above.
- For [tex]\(k = 1\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \][/tex]
This value does not fall within the specified range.
- For [tex]\(k = 2\)[/tex]:
[tex]\[ x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \][/tex]
This value does fall within the range [tex]\(\pi \leq x \leq 2\pi\)[/tex].
Thus, the suitable [tex]\(x\)[/tex] value falling in the specified range is:
[tex]\[ x = \frac{5\pi}{3} \approx 5.236 \][/tex]
So, the complete solution indicates that the value of [tex]\(x\)[/tex] in the interval [tex]\(\pi \leq x \leq 2\pi\)[/tex] that satisfies the equation [tex]\(\tan^2(x) + 2\sqrt{3}\tan(x) + 3 = 0\)[/tex] is [tex]\( x = \frac{5\pi}{3} \approx 5.236 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.