Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the limit of the sequence
[tex]\[ d_n = \ln(n^2 + 5) - \ln(n^2 - 1) \][/tex]
as [tex]\( n \)[/tex] approaches infinity, follow these steps:
1. Apply properties of logarithms:
Recall the property of logarithms that states [tex]\( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \)[/tex]. Using this property, we can rewrite the sequence as:
[tex]\[ d_n = \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) \][/tex]
2. Analyze the expression inside the logarithm:
To gain insight into the behavior of the sequence as [tex]\( n \)[/tex] approaches infinity, consider the fraction inside the logarithm:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} \][/tex]
3. Simplify the fraction:
Divide both the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} = \frac{n^2/n^2 + 5/n^2}{n^2/n^2 - 1/n^2} = \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} \][/tex]
4. Take the limit as [tex]\( n \)[/tex] approaches infinity:
Observe that as [tex]\( n \)[/tex] grows larger and larger, the terms [tex]\( \frac{5}{n^2} \)[/tex] and [tex]\( \frac{1}{n^2} \)[/tex] approach zero:
[tex]\[ \lim_{n \rightarrow \infty} \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} = \frac{1 + 0}{1 - 0} = 1 \][/tex]
5. Apply the limit to the logarithm:
Now, we need to find the limit of the logarithm of this fraction as [tex]\( n \)[/tex] approaches infinity:
[tex]\[ \lim_{n \rightarrow \infty} \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) = \ln\left(\lim_{n \rightarrow \infty} \frac{n^2 + 5}{n^2 - 1}\right) = \ln(1) \][/tex]
6. Determine the final limit:
We know that [tex]\( \ln(1) = 0 \)[/tex].
Therefore, the limit of the sequence [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} d_n = 0 \][/tex]
Thus, the answer is [tex]\( \boxed{0} \)[/tex].
[tex]\[ d_n = \ln(n^2 + 5) - \ln(n^2 - 1) \][/tex]
as [tex]\( n \)[/tex] approaches infinity, follow these steps:
1. Apply properties of logarithms:
Recall the property of logarithms that states [tex]\( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \)[/tex]. Using this property, we can rewrite the sequence as:
[tex]\[ d_n = \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) \][/tex]
2. Analyze the expression inside the logarithm:
To gain insight into the behavior of the sequence as [tex]\( n \)[/tex] approaches infinity, consider the fraction inside the logarithm:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} \][/tex]
3. Simplify the fraction:
Divide both the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ \frac{n^2 + 5}{n^2 - 1} = \frac{n^2/n^2 + 5/n^2}{n^2/n^2 - 1/n^2} = \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} \][/tex]
4. Take the limit as [tex]\( n \)[/tex] approaches infinity:
Observe that as [tex]\( n \)[/tex] grows larger and larger, the terms [tex]\( \frac{5}{n^2} \)[/tex] and [tex]\( \frac{1}{n^2} \)[/tex] approach zero:
[tex]\[ \lim_{n \rightarrow \infty} \frac{1 + \frac{5}{n^2}}{1 - \frac{1}{n^2}} = \frac{1 + 0}{1 - 0} = 1 \][/tex]
5. Apply the limit to the logarithm:
Now, we need to find the limit of the logarithm of this fraction as [tex]\( n \)[/tex] approaches infinity:
[tex]\[ \lim_{n \rightarrow \infty} \ln\left(\frac{n^2 + 5}{n^2 - 1}\right) = \ln\left(\lim_{n \rightarrow \infty} \frac{n^2 + 5}{n^2 - 1}\right) = \ln(1) \][/tex]
6. Determine the final limit:
We know that [tex]\( \ln(1) = 0 \)[/tex].
Therefore, the limit of the sequence [tex]\( d_n \)[/tex] as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_{n \rightarrow \infty} d_n = 0 \][/tex]
Thus, the answer is [tex]\( \boxed{0} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.