At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the inequality involving the given expression [tex]\(9x - 22\)[/tex].
### Step-by-Step Solution:
1. Write Down the Inequality:
We start with an inequality involving the given expression [tex]\((9x - 22) > 0\)[/tex].
2. Isolate [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], we need to manipulate the inequality such that [tex]\(x\)[/tex] is on one side of the inequality symbol.
[tex]\(9x - 22 > 0\)[/tex]
3. Add 22 to Both Sides:
Add 22 to both sides of the inequality to start isolating [tex]\(x\)[/tex].
[tex]\(9x - 22 + 22 > 0 + 22\)[/tex]
This simplifies to:
[tex]\(9x > 22\)[/tex]
4. Divide Both Sides by 9:
To solve for [tex]\(x\)[/tex], divide both sides of the inequality by 9.
[tex]\(\frac{9x}{9} > \frac{22}{9}\)[/tex]
This simplifies to:
[tex]\(x > \frac{22}{9}\)[/tex]
5. Interpret the Inequality:
The solution to our inequality is [tex]\(x > \frac{22}{9}\)[/tex]. In interval notation, this is written as:
[tex]\(\left( \frac{22}{9}, \infty \right)\)[/tex]
### Conclusion:
The inequality we wrote and solved describes the set of possible values for [tex]\(x\)[/tex] such that [tex]\((9x - 22) > 0\)[/tex]. Therefore, the solution to the inequality is:
[tex]\[ x > \frac{22}{9} \][/tex]
In interval notation, this is:
[tex]\[ \left( \frac{22}{9}, \infty \right) \][/tex]
### Step-by-Step Solution:
1. Write Down the Inequality:
We start with an inequality involving the given expression [tex]\((9x - 22) > 0\)[/tex].
2. Isolate [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], we need to manipulate the inequality such that [tex]\(x\)[/tex] is on one side of the inequality symbol.
[tex]\(9x - 22 > 0\)[/tex]
3. Add 22 to Both Sides:
Add 22 to both sides of the inequality to start isolating [tex]\(x\)[/tex].
[tex]\(9x - 22 + 22 > 0 + 22\)[/tex]
This simplifies to:
[tex]\(9x > 22\)[/tex]
4. Divide Both Sides by 9:
To solve for [tex]\(x\)[/tex], divide both sides of the inequality by 9.
[tex]\(\frac{9x}{9} > \frac{22}{9}\)[/tex]
This simplifies to:
[tex]\(x > \frac{22}{9}\)[/tex]
5. Interpret the Inequality:
The solution to our inequality is [tex]\(x > \frac{22}{9}\)[/tex]. In interval notation, this is written as:
[tex]\(\left( \frac{22}{9}, \infty \right)\)[/tex]
### Conclusion:
The inequality we wrote and solved describes the set of possible values for [tex]\(x\)[/tex] such that [tex]\((9x - 22) > 0\)[/tex]. Therefore, the solution to the inequality is:
[tex]\[ x > \frac{22}{9} \][/tex]
In interval notation, this is:
[tex]\[ \left( \frac{22}{9}, \infty \right) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.