Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which system of inequalities has a line as a solution, let's analyze each system in detail.
### System 1:
[tex]\[ \begin{cases} 2x + 4y \geq 3 \\ 2x + 4y \leq 3 \end{cases} \][/tex]
- For the inequality [tex]\(2x + 4y \geq 3\)[/tex], any point [tex]\((x, y)\)[/tex] that satisfies this inequality will lie on or above the line [tex]\(2x + 4y = 3\)[/tex].
- For the inequality [tex]\(2x + 4y \leq 3\)[/tex], any point [tex]\((x, y)\)[/tex] that satisfies this inequality will lie on or below the line [tex]\(2x + 4y = 3\)[/tex].
For a point to satisfy both inequalities simultaneously, it must lie exactly on the line [tex]\(2x + 4y = 3\)[/tex]. Therefore, this system of inequalities simplifies to the equation of the line:
[tex]\[2x + 4y = 3\][/tex]
So, system 1 has a line as its solution.
### System 2:
[tex]\[ \begin{aligned} 2x + 4y & \geq 3 \\ 2x + 4y & > 3 \end{aligned} \][/tex]
- The inequality [tex]\(2x + 4y \geq 3\)[/tex] encompasses all the points on or above the line [tex]\(2x + 4y = 3\)[/tex].
- The inequality [tex]\(2x + 4y > 3\)[/tex] encompasses all the points strictly above the line [tex]\(2x + 4y = 3\)[/tex].
There is no point [tex]\((x, y)\)[/tex] that can simultaneously satisfy both [tex]\( \geq 3\)[/tex] and [tex]\( > 3\)[/tex]. Thus, there are no common solutions, and this system does not have a line as its solution.
### System 3:
[tex]\[ \begin{cases} 2x + 4y > 3 \\ 2x + 4y < 3 \end{cases} \][/tex]
- The inequality [tex]\(2x + 4y > 3\)[/tex] encompasses all the points strictly above the line [tex]\(2x + 4y = 3\)[/tex].
- The inequality [tex]\(2x + 4y < 3\)[/tex] encompasses all the points strictly below the line [tex]\(2x + 4y = 3\)[/tex].
It is inherently impossible for a point to satisfy both [tex]\(> 3\)[/tex] and [tex]\( < 3\)[/tex] simultaneously. Thus, this system also has no solution.
Based on this analysis, system 1 is the only system where the solution is a line.
So, the answer is:
[tex]\[ \boxed{1} \][/tex]
### System 1:
[tex]\[ \begin{cases} 2x + 4y \geq 3 \\ 2x + 4y \leq 3 \end{cases} \][/tex]
- For the inequality [tex]\(2x + 4y \geq 3\)[/tex], any point [tex]\((x, y)\)[/tex] that satisfies this inequality will lie on or above the line [tex]\(2x + 4y = 3\)[/tex].
- For the inequality [tex]\(2x + 4y \leq 3\)[/tex], any point [tex]\((x, y)\)[/tex] that satisfies this inequality will lie on or below the line [tex]\(2x + 4y = 3\)[/tex].
For a point to satisfy both inequalities simultaneously, it must lie exactly on the line [tex]\(2x + 4y = 3\)[/tex]. Therefore, this system of inequalities simplifies to the equation of the line:
[tex]\[2x + 4y = 3\][/tex]
So, system 1 has a line as its solution.
### System 2:
[tex]\[ \begin{aligned} 2x + 4y & \geq 3 \\ 2x + 4y & > 3 \end{aligned} \][/tex]
- The inequality [tex]\(2x + 4y \geq 3\)[/tex] encompasses all the points on or above the line [tex]\(2x + 4y = 3\)[/tex].
- The inequality [tex]\(2x + 4y > 3\)[/tex] encompasses all the points strictly above the line [tex]\(2x + 4y = 3\)[/tex].
There is no point [tex]\((x, y)\)[/tex] that can simultaneously satisfy both [tex]\( \geq 3\)[/tex] and [tex]\( > 3\)[/tex]. Thus, there are no common solutions, and this system does not have a line as its solution.
### System 3:
[tex]\[ \begin{cases} 2x + 4y > 3 \\ 2x + 4y < 3 \end{cases} \][/tex]
- The inequality [tex]\(2x + 4y > 3\)[/tex] encompasses all the points strictly above the line [tex]\(2x + 4y = 3\)[/tex].
- The inequality [tex]\(2x + 4y < 3\)[/tex] encompasses all the points strictly below the line [tex]\(2x + 4y = 3\)[/tex].
It is inherently impossible for a point to satisfy both [tex]\(> 3\)[/tex] and [tex]\( < 3\)[/tex] simultaneously. Thus, this system also has no solution.
Based on this analysis, system 1 is the only system where the solution is a line.
So, the answer is:
[tex]\[ \boxed{1} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.