Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the equation of the line that is parallel to the given line passing through the points [tex]\((0, -3)\)[/tex] and [tex]\((2, 3)\)[/tex] and that also passes through the point [tex]\((-1, -1)\)[/tex], we can proceed step-by-step as follows:
Step 1: Calculate the slope of the given line.
Given points:
- [tex]\((x_1, y_1) = (0, -3)\)[/tex]
- [tex]\((x_2, y_2) = (2, 3)\)[/tex]
The formula to calculate the slope ([tex]\(m\)[/tex]) between two points is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{3 - (-3)}{2 - 0} = \frac{3 + 3}{2} = \frac{6}{2} = 3 \][/tex]
So, the slope of the given line is [tex]\(m = 3\)[/tex].
Step 2: Determine the equation of the line parallel to the given line.
A line parallel to another line will have the same slope. Therefore, the slope of our new line must also be [tex]\(3\)[/tex].
Step 3: Use the point-slope form of the equation of a line.
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, our slope [tex]\(m = 3\)[/tex] and our point is [tex]\((-1, -1)\)[/tex].
Substituting the point [tex]\((-1, -1)\)[/tex] into the point-slope form:
[tex]\[ y - (-1) = 3(x - (-1)) \][/tex]
Simplifying, we get:
[tex]\[ y + 1 = 3(x + 1) \][/tex]
Conclusion:
The equation of the line parallel to the given line passing through the point [tex]\((-1, -1)\)[/tex] is:
[tex]\[ y + 1 = 3(x + 1) \][/tex]
Thus, among the given options, the correct one is:
[tex]\[ y + 1 = 3(x + 1) \][/tex]
Step 1: Calculate the slope of the given line.
Given points:
- [tex]\((x_1, y_1) = (0, -3)\)[/tex]
- [tex]\((x_2, y_2) = (2, 3)\)[/tex]
The formula to calculate the slope ([tex]\(m\)[/tex]) between two points is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{3 - (-3)}{2 - 0} = \frac{3 + 3}{2} = \frac{6}{2} = 3 \][/tex]
So, the slope of the given line is [tex]\(m = 3\)[/tex].
Step 2: Determine the equation of the line parallel to the given line.
A line parallel to another line will have the same slope. Therefore, the slope of our new line must also be [tex]\(3\)[/tex].
Step 3: Use the point-slope form of the equation of a line.
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, our slope [tex]\(m = 3\)[/tex] and our point is [tex]\((-1, -1)\)[/tex].
Substituting the point [tex]\((-1, -1)\)[/tex] into the point-slope form:
[tex]\[ y - (-1) = 3(x - (-1)) \][/tex]
Simplifying, we get:
[tex]\[ y + 1 = 3(x + 1) \][/tex]
Conclusion:
The equation of the line parallel to the given line passing through the point [tex]\((-1, -1)\)[/tex] is:
[tex]\[ y + 1 = 3(x + 1) \][/tex]
Thus, among the given options, the correct one is:
[tex]\[ y + 1 = 3(x + 1) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.