Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the best prediction for the wavelength of the key that is 8 above the A above middle C using an exponential regression model, we can follow these steps:
1. Collect the Data:
The data provided gives us the number of keys above the A above middle C and their corresponding wavelengths.
[tex]\[ \begin{align*} x &: \{ 0, 2, 3, 6, 10 \} \\ y &: \{ 78.41, 69.85, 65.93, 55.44, 44.01 \} \\ \end{align*} \][/tex]
2. Model Identification:
We are asked to use an exponential regression model. This means we assume the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be modeled with an equation of the form:
[tex]\[ y = a \cdot b^x \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
3. Transform to a Linear Model:
By taking the natural logarithm of both sides of the equation, we can linearize the model:
[tex]\[ \ln(y) = \ln(a \cdot b^x) \][/tex]
[tex]\[ \ln(y) = \ln(a) + x \cdot \ln(b) \][/tex]
Letting [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex], the model becomes:
[tex]\[ Y = A + Bx \][/tex]
Thus, we perform a linear regression on [tex]\( x \)[/tex] vs. [tex]\( \ln(y) \)[/tex].
4. Find the Coefficients:
Using linear regression on the transformed data:
[tex]\[ x: \{ 0, 2, 3, 6, 10 \} \][/tex]
[tex]\[ Y: \{ 4.361951470242831, 4.246350085702971, 4.188593573125209, 4.015301354881648, 3.784416880823 \} \][/tex]
The linear regression yields coefficients that represent [tex]\( \ln(a) \)[/tex] and [tex]\( \ln(b) \)[/tex]:
[tex]\[ \ln(y) = -0.05775194578546567 \cdot x + 4.361880845254086 \][/tex]
Therefore:
[tex]\[ A = 4.361880845254086, \quad B = -0.05775194578546567 \][/tex]
Converting back:
[tex]\[ a = e^{A} \approx 78.40446249017809 \][/tex]
[tex]\[ b = e^{B} \approx 0.9438840528175181 \][/tex]
5. Prediction for 8 Keys Above:
Using the exponential model [tex]\( y = a \cdot b^x \)[/tex]:
[tex]\[ y(8) = 78.40446249017809 \cdot (0.9438840528175181)^8 \][/tex]
This calculation gives:
[tex]\[ y(8) \approx 49.39579400502101 \text{ cm} \][/tex]
6. Closest Given Option:
We compare this predicted value to the provided options: [tex]\( 49.31 \)[/tex], [tex]\( 49.44 \)[/tex], [tex]\( 49.73 \)[/tex], and [tex]\( 49.78 \)[/tex] cm. The closest value to [tex]\( 49.39579400502101 \)[/tex] cm is [tex]\( 49.44 \)[/tex] cm.
Therefore, the best prediction for the wavelength of the key that is 8 above the A above middle C is:
[tex]\[ \boxed{49.44 \text{ cm}} \][/tex]
1. Collect the Data:
The data provided gives us the number of keys above the A above middle C and their corresponding wavelengths.
[tex]\[ \begin{align*} x &: \{ 0, 2, 3, 6, 10 \} \\ y &: \{ 78.41, 69.85, 65.93, 55.44, 44.01 \} \\ \end{align*} \][/tex]
2. Model Identification:
We are asked to use an exponential regression model. This means we assume the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can be modeled with an equation of the form:
[tex]\[ y = a \cdot b^x \][/tex]
where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants.
3. Transform to a Linear Model:
By taking the natural logarithm of both sides of the equation, we can linearize the model:
[tex]\[ \ln(y) = \ln(a \cdot b^x) \][/tex]
[tex]\[ \ln(y) = \ln(a) + x \cdot \ln(b) \][/tex]
Letting [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex], the model becomes:
[tex]\[ Y = A + Bx \][/tex]
Thus, we perform a linear regression on [tex]\( x \)[/tex] vs. [tex]\( \ln(y) \)[/tex].
4. Find the Coefficients:
Using linear regression on the transformed data:
[tex]\[ x: \{ 0, 2, 3, 6, 10 \} \][/tex]
[tex]\[ Y: \{ 4.361951470242831, 4.246350085702971, 4.188593573125209, 4.015301354881648, 3.784416880823 \} \][/tex]
The linear regression yields coefficients that represent [tex]\( \ln(a) \)[/tex] and [tex]\( \ln(b) \)[/tex]:
[tex]\[ \ln(y) = -0.05775194578546567 \cdot x + 4.361880845254086 \][/tex]
Therefore:
[tex]\[ A = 4.361880845254086, \quad B = -0.05775194578546567 \][/tex]
Converting back:
[tex]\[ a = e^{A} \approx 78.40446249017809 \][/tex]
[tex]\[ b = e^{B} \approx 0.9438840528175181 \][/tex]
5. Prediction for 8 Keys Above:
Using the exponential model [tex]\( y = a \cdot b^x \)[/tex]:
[tex]\[ y(8) = 78.40446249017809 \cdot (0.9438840528175181)^8 \][/tex]
This calculation gives:
[tex]\[ y(8) \approx 49.39579400502101 \text{ cm} \][/tex]
6. Closest Given Option:
We compare this predicted value to the provided options: [tex]\( 49.31 \)[/tex], [tex]\( 49.44 \)[/tex], [tex]\( 49.73 \)[/tex], and [tex]\( 49.78 \)[/tex] cm. The closest value to [tex]\( 49.39579400502101 \)[/tex] cm is [tex]\( 49.44 \)[/tex] cm.
Therefore, the best prediction for the wavelength of the key that is 8 above the A above middle C is:
[tex]\[ \boxed{49.44 \text{ cm}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.