Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the limit of the sequence as [tex]\( n \)[/tex] approaches infinity, we start by analyzing the given expression for [tex]\( a_n \)[/tex]:
[tex]\[ a_n = \frac{4 + n - 4n^2}{5n^2 + 9} \][/tex]
Step 1: Identify the highest power of [tex]\( n \)[/tex] in both the numerator and the denominator. In this case, the highest power of [tex]\( n \)[/tex] in the numerator is [tex]\( n^2 \)[/tex] and in the denominator is also [tex]\( n^2 \)[/tex].
Step 2: To simplify the expression, we divide every term in the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{n}{n^2} - 4}{5 + \frac{9}{n^2}} \][/tex]
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{1}{n} - 4}{5 + \frac{9}{n^2}} \][/tex]
Step 3: As [tex]\( n \)[/tex] approaches infinity, the terms [tex]\(\frac{4}{n^2}\)[/tex], [tex]\(\frac{1}{n}\)[/tex], and [tex]\(\frac{9}{n^2}\)[/tex] all approach 0. Thus, the expression simplifies to:
[tex]\[ a_n = \frac{0 + 0 - 4}{5 + 0} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
Therefore, the limit of the sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_ {n \rightarrow \infty} a_n = -\frac{4}{5} \][/tex]
[tex]\[ a_n = \frac{4 + n - 4n^2}{5n^2 + 9} \][/tex]
Step 1: Identify the highest power of [tex]\( n \)[/tex] in both the numerator and the denominator. In this case, the highest power of [tex]\( n \)[/tex] in the numerator is [tex]\( n^2 \)[/tex] and in the denominator is also [tex]\( n^2 \)[/tex].
Step 2: To simplify the expression, we divide every term in the numerator and the denominator by [tex]\( n^2 \)[/tex]:
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{n}{n^2} - 4}{5 + \frac{9}{n^2}} \][/tex]
[tex]\[ a_n = \frac{\frac{4}{n^2} + \frac{1}{n} - 4}{5 + \frac{9}{n^2}} \][/tex]
Step 3: As [tex]\( n \)[/tex] approaches infinity, the terms [tex]\(\frac{4}{n^2}\)[/tex], [tex]\(\frac{1}{n}\)[/tex], and [tex]\(\frac{9}{n^2}\)[/tex] all approach 0. Thus, the expression simplifies to:
[tex]\[ a_n = \frac{0 + 0 - 4}{5 + 0} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
Therefore, the limit of the sequence as [tex]\( n \)[/tex] approaches infinity is:
[tex]\[ \lim_ {n \rightarrow \infty} a_n = -\frac{4}{5} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.