Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(\log (t - 3) = \log (17 - 4t)\)[/tex], follow these detailed steps:
1. Understand the property of logarithms:
The equation [tex]\(\log (a) = \log (b)\)[/tex] implies that [tex]\(a = b\)[/tex], provided [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are both positive.
2. Apply the property:
Given [tex]\(\log (t - 3) = \log (17 - 4t)\)[/tex], we can set the arguments of the logarithms equal to each other:
[tex]\[ t - 3 = 17 - 4t \][/tex]
3. Solve for [tex]\(t\)[/tex]:
- Start by isolating [tex]\(t\)[/tex] on one side. Add [tex]\(4t\)[/tex] to both sides to combine the [tex]\(t\)[/tex] terms:
[tex]\[ t + 4t - 3 = 17 \][/tex]
This simplifies to:
[tex]\[ 5t - 3 = 17 \][/tex]
- Next, add 3 to both sides to isolate the term with [tex]\(t\)[/tex]:
[tex]\[ 5t - 3 + 3 = 17 + 3 \][/tex]
This simplifies to:
[tex]\[ 5t = 20 \][/tex]
- Finally, divide by 5 to solve for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{20}{5} = 4 \][/tex]
4. Check the solution:
For the solution [tex]\(t = 4\)[/tex] to be valid, the arguments of the original logarithms must be positive:
- Check [tex]\(t - 3 > 0\)[/tex]:
[tex]\[ 4 - 3 = 1 > 0 \][/tex]
- Check [tex]\(17 - 4t > 0\)[/tex]:
[tex]\[ 17 - 4 \times 4 = 17 - 16 = 1 > 0 \][/tex]
Both conditions are satisfied, so the solution [tex]\(t = 4\)[/tex] is valid.
Therefore, the solution to the equation [tex]\(\log (t - 3) = \log (17 - 4t)\)[/tex] is [tex]\(\boxed{4}\)[/tex].
1. Understand the property of logarithms:
The equation [tex]\(\log (a) = \log (b)\)[/tex] implies that [tex]\(a = b\)[/tex], provided [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are both positive.
2. Apply the property:
Given [tex]\(\log (t - 3) = \log (17 - 4t)\)[/tex], we can set the arguments of the logarithms equal to each other:
[tex]\[ t - 3 = 17 - 4t \][/tex]
3. Solve for [tex]\(t\)[/tex]:
- Start by isolating [tex]\(t\)[/tex] on one side. Add [tex]\(4t\)[/tex] to both sides to combine the [tex]\(t\)[/tex] terms:
[tex]\[ t + 4t - 3 = 17 \][/tex]
This simplifies to:
[tex]\[ 5t - 3 = 17 \][/tex]
- Next, add 3 to both sides to isolate the term with [tex]\(t\)[/tex]:
[tex]\[ 5t - 3 + 3 = 17 + 3 \][/tex]
This simplifies to:
[tex]\[ 5t = 20 \][/tex]
- Finally, divide by 5 to solve for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{20}{5} = 4 \][/tex]
4. Check the solution:
For the solution [tex]\(t = 4\)[/tex] to be valid, the arguments of the original logarithms must be positive:
- Check [tex]\(t - 3 > 0\)[/tex]:
[tex]\[ 4 - 3 = 1 > 0 \][/tex]
- Check [tex]\(17 - 4t > 0\)[/tex]:
[tex]\[ 17 - 4 \times 4 = 17 - 16 = 1 > 0 \][/tex]
Both conditions are satisfied, so the solution [tex]\(t = 4\)[/tex] is valid.
Therefore, the solution to the equation [tex]\(\log (t - 3) = \log (17 - 4t)\)[/tex] is [tex]\(\boxed{4}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.