Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the increase in intensity level when the intensity of sound increases by a factor of [tex]\(10^5\)[/tex], we follow these steps:
1. Understand the Relationship: The relationship between the intensity increase factor and the increase in intensity level (in decibels, dB) is defined by the formula:
[tex]\[ \text{Increase in dB} = 10 \times \log_{10}(\text{intensity increase factor}) \][/tex]
2. Given Intensity Increase Factor: The intensity increase factor is given as [tex]\(10^5\)[/tex].
3. Substitute and Calculate:
- Substitute the given intensity increase factor into the formula:
[tex]\[ \text{Increase in dB} = 10 \times \log_{10}(10^5) \][/tex]
- Evaluate [tex]\(\log_{10}(10^5)\)[/tex]. Since [tex]\(\log_{10}(10^5)\)[/tex] simplifies to 5 (because the logarithm base 10 of [tex]\(10^5\)[/tex] is the exponent 5):
[tex]\[ \log_{10}(10^5) = 5 \][/tex]
- Now, multiply this result by 10:
[tex]\[ \text{Increase in dB} = 10 \times 5 = 50 \text{ dB} \][/tex]
4. Conclusion: Therefore, the increase in intensity level when the intensity increases by a factor of [tex]\(10^5\)[/tex] is [tex]\(50 \text{ dB}\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{50 \text{ dB}} \][/tex]
1. Understand the Relationship: The relationship between the intensity increase factor and the increase in intensity level (in decibels, dB) is defined by the formula:
[tex]\[ \text{Increase in dB} = 10 \times \log_{10}(\text{intensity increase factor}) \][/tex]
2. Given Intensity Increase Factor: The intensity increase factor is given as [tex]\(10^5\)[/tex].
3. Substitute and Calculate:
- Substitute the given intensity increase factor into the formula:
[tex]\[ \text{Increase in dB} = 10 \times \log_{10}(10^5) \][/tex]
- Evaluate [tex]\(\log_{10}(10^5)\)[/tex]. Since [tex]\(\log_{10}(10^5)\)[/tex] simplifies to 5 (because the logarithm base 10 of [tex]\(10^5\)[/tex] is the exponent 5):
[tex]\[ \log_{10}(10^5) = 5 \][/tex]
- Now, multiply this result by 10:
[tex]\[ \text{Increase in dB} = 10 \times 5 = 50 \text{ dB} \][/tex]
4. Conclusion: Therefore, the increase in intensity level when the intensity increases by a factor of [tex]\(10^5\)[/tex] is [tex]\(50 \text{ dB}\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{50 \text{ dB}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.