Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the equation of the oblique asymptote of [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex], we can use synthetic division. Here's a detailed step-by-step solution:
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
1. Set up the synthetic division:
We have the numerator polynomial [tex]\( x^2 + x + 4 \)[/tex] and the denominator [tex]\( x - 1 \)[/tex]. Our synthetic division setup is: [tex]\( 1 \rfloor \quad 1 \quad 1 \quad 4 \)[/tex].
2. Perform synthetic division:
- Write down the coefficients of the numerator: [tex]\( 1 \)[/tex] (for [tex]\( x^2 \)[/tex]), [tex]\( 1 \)[/tex] (for [tex]\( x \)[/tex]), and [tex]\( 4 \)[/tex] (constant term).
- Start the division process. Bring down the first coefficient [tex]\( 1 \)[/tex].
[tex]\[ \begin{array}{r|rrr} 1 & 1 & 1 & 4 \\ & & 1 & 2 \\ \hline & 1 & 1 & 6 \\ \end{array} \][/tex]
Here's the step-by-step breakdown:
- Bring down the 1.
- Multiply 1 by 1 (divisor), result is 1. Write this under the next coefficient (i.e., under the 1).
- Add this 1 to the next coefficient (1), resulting in 2.
- Multiply this 2 by 1 (divisor), result is 2. Write this under the next coefficient (i.e., under the 4).
- Add this 2 to the next coefficient (4), resulting in 6.
3. Interpret the synthetic division result:
The quotient obtained from the synthetic division (disregarding the remainder) gives us the coefficients for the linear polynomial which represents the oblique asymptote.
The results from the synthetic division are: [tex]\(1, 2\)[/tex].
4. Form the equation of the oblique asymptote:
The oblique asymptote has the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are coefficients from the synthetic division.
From our synthetic division, we have:
- [tex]\( m = -1 \)[/tex]
- [tex]\( b = 0 \)[/tex]
5. Write the final equation:
Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 0 \quad \text{or simply} \quad y = -x. \][/tex]
Hence, the equation of the oblique asymptote for [tex]\( g(x) = \frac{x^2 + x + 4}{x - 1} \)[/tex] is [tex]\( y = -x \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.