Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem using Newton's Law of Cooling, we will follow the formula [tex]\( f(t) = T_0 + C e^{-k t} \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
Given:
- Environmental temperature, [tex]\( T_0 = 0^{\circ} F \)[/tex]
- Initial temperature of the coffee, [tex]\( T_{\text{initial}} = 140^{\circ} F \)[/tex]
- Temperature of the coffee after [tex]\( 15 \)[/tex] minutes, [tex]\( T_{\text{after 15}} = 41^{\circ} F \)[/tex]
- Time at [tex]\( t = 15 \)[/tex] minutes
- We need to find the temperature of the coffee after [tex]\( 20 \)[/tex] minutes
Let's solve step-by-step:
1. Determine the constant [tex]\( C \)[/tex]:
Using the initial temperature:
[tex]\[ T_{\text{initial}} = T_0 + C \][/tex]
[tex]\[ 140 = 0 + C \][/tex]
[tex]\[ C = 140 \][/tex]
2. Find the decay constant [tex]\( k \)[/tex]:
Using the temperature after 15 minutes:
[tex]\[ T_{\text{after 15}} = T_0 + C e^{-k \cdot 15} \][/tex]
[tex]\[ 41 = 0 + 140 e^{-15k} \][/tex]
[tex]\[ 41 = 140 e^{-15k} \][/tex]
[tex]\[ \frac{41}{140} = e^{-15k} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ \ln\left(\frac{41}{140}\right) = -15k \][/tex]
[tex]\[ k = -\frac{\ln\left(\frac{41}{140}\right)}{15} \][/tex]
After solving, we find:
[tex]\[ k \approx 0.08187 \][/tex]
3. Calculate the temperature after 20 minutes:
Using the formula:
[tex]\[ T_{\text{after 20}} = T_0 + C e^{-k \cdot 20} \][/tex]
[tex]\[ T_{\text{after 20}} = 0 + 140 e^{-0.08187 \cdot 20} \][/tex]
Simplifying:
[tex]\[ T_{\text{after 20}} \approx 27.227 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ T_{\text{after 20}} \approx 27^{\circ} F \][/tex]
Hence, the coffee’s temperature after 20 minutes is [tex]\( 27^{\circ} F \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.