At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What are the domain and range of the function [tex]f(x)=3^x+5[/tex]?

A. Domain: [tex](-\infty, \infty)[/tex]; Range: [tex](0, \infty)[/tex]

B. Domain: [tex](-\infty, \infty)[/tex]; Range: [tex](5, \infty)[/tex]

C. Domain: [tex](0, \infty)[/tex]; Range: [tex](-\infty, \infty)[/tex]

D. Domain: [tex](5, \infty)[/tex]; Range: [tex](-\infty, \infty)[/tex]


Sagot :

To determine the domain and range of the function [tex]\( f(x) = 3^x + 5 \)[/tex], let's analyze each part of the function in detail.

### Domain
The domain of a function is the set of all possible input values for which the function is defined.

1. The base component of the function [tex]\( 3^x \)[/tex] is an exponential function.
2. Exponential functions are defined for all real numbers, meaning that [tex]\( x \)[/tex] can take any real value.

Thus, the domain of [tex]\( f(x) = 3^x + 5 \)[/tex] is all real numbers:
[tex]\[ \text{Domain} = (-\infty, \infty) \][/tex]

### Range
The range of a function is the set of all possible output values (or [tex]\( f(x) \)[/tex] values).

1. Start by considering the range of the exponential function [tex]\( g(x) = 3^x \)[/tex]:
- As [tex]\( x \)[/tex] approaches [tex]\(-\infty \)[/tex], [tex]\( 3^x \)[/tex] approaches [tex]\( 0 \)[/tex] (but never actually reaches 0, it only gets arbitrarily close).
- As [tex]\( x \)[/tex] increases to [tex]\( \infty \)[/tex], [tex]\( 3^x \)[/tex] grows without bounds.

Therefore, the range of [tex]\( 3^x \)[/tex] is [tex]\( (0, \infty) \)[/tex].

2. Now, consider the effect of adding 5 to [tex]\( 3^x \)[/tex], i.e. [tex]\( f(x) = 3^x + 5 \)[/tex]:
- Every value in the range of [tex]\( 3^x \)[/tex] is shifted upwards by 5 units.
- When [tex]\( 3^x \)[/tex] is close to 0, [tex]\( f(x) \)[/tex] is close to 5.
- When [tex]\( 3^x \)[/tex] becomes very large, [tex]\( f(x) \)[/tex] also becomes very large.

This means that the smallest value [tex]\( f(x) \)[/tex] can get is just above 5, and there is no upper bound.

Thus, the range of [tex]\( f(x) = 3^x + 5 \)[/tex] is:
[tex]\[ \text{Range} = (5, \infty) \][/tex]

### Conclusion
Therefore, the correct domain and range for the function [tex]\( f(x) = 3^x + 5 \)[/tex] are:
[tex]\[ \text{Domain} = (-\infty, \infty) \][/tex]
[tex]\[ \text{Range} = (5, \infty) \][/tex]

So, the correct answer is:
Domain: [tex]\((- \infty, \infty)\)[/tex]; Range: (5, \infty)