Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given numbers are perfect squares, we need to identify numbers that can be expressed as the square of an integer. Let's analyze each number step-by-step:
1. 11:
- To check if 11 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 11 \)[/tex].
- The square root of 11 ([tex]\( \sqrt{11} \)[/tex]) is approximately 3.316, which is not an integer.
- Therefore, 11 is not a perfect square.
2. 12:
- To check if 12 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 12 \)[/tex].
- The square root of 12 ([tex]\( \sqrt{12} \)[/tex]) is approximately 3.464, which is not an integer.
- Therefore, 12 is not a perfect square.
3. 16:
- To check if 16 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 16 \)[/tex].
- The square root of 16 ([tex]\( \sqrt{16} \)[/tex]) is exactly 4, which is an integer.
- Therefore, 16 is a perfect square.
4. 32:
- To check if 32 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 32 \)[/tex].
- The square root of 32 ([tex]\( \sqrt{32} \)[/tex]) is approximately 5.657, which is not an integer.
- Therefore, 32 is not a perfect square.
5. 36:
- To check if 36 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 36 \)[/tex].
- The square root of 36 ([tex]\( \sqrt{36} \)[/tex]) is exactly 6, which is an integer.
- Therefore, 36 is a perfect square.
After examining each number, we find that the perfect squares among the given numbers are:
[tex]\[ 16 \text{ and } 36 \][/tex]
1. 11:
- To check if 11 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 11 \)[/tex].
- The square root of 11 ([tex]\( \sqrt{11} \)[/tex]) is approximately 3.316, which is not an integer.
- Therefore, 11 is not a perfect square.
2. 12:
- To check if 12 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 12 \)[/tex].
- The square root of 12 ([tex]\( \sqrt{12} \)[/tex]) is approximately 3.464, which is not an integer.
- Therefore, 12 is not a perfect square.
3. 16:
- To check if 16 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 16 \)[/tex].
- The square root of 16 ([tex]\( \sqrt{16} \)[/tex]) is exactly 4, which is an integer.
- Therefore, 16 is a perfect square.
4. 32:
- To check if 32 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 32 \)[/tex].
- The square root of 32 ([tex]\( \sqrt{32} \)[/tex]) is approximately 5.657, which is not an integer.
- Therefore, 32 is not a perfect square.
5. 36:
- To check if 36 is a perfect square, we look for an integer [tex]\( n \)[/tex] such that [tex]\( n^2 = 36 \)[/tex].
- The square root of 36 ([tex]\( \sqrt{36} \)[/tex]) is exactly 6, which is an integer.
- Therefore, 36 is a perfect square.
After examining each number, we find that the perfect squares among the given numbers are:
[tex]\[ 16 \text{ and } 36 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.