Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the roots of the polynomial equation [tex]\(x^4 + x^3 = 4x^2 + 4x\)[/tex], we will systematically solve it step by step.
1. Rewrite the equation:
Start with the given polynomial equation:
[tex]\[ x^4 + x^3 = 4x^2 + 4x \][/tex]
2. Bring all terms to one side:
To facilitate solving, we move all terms to one side of the equation:
[tex]\[ x^4 + x^3 - 4x^2 - 4x = 0 \][/tex]
3. Factor the polynomial:
To solve for [tex]\( x \)[/tex], we can try to factor the polynomial. Notice that all terms have a common factor, which is [tex]\( x \)[/tex]:
[tex]\[ x(x^3 + x^2 - 4x - 4) = 0 \][/tex]
This gives us one root directly:
[tex]\[ x = 0 \][/tex]
4. Solve the remaining polynomial:
Now, we need to solve the cubic equation:
[tex]\[ x^3 + x^2 - 4x - 4 = 0 \][/tex]
Through further factoring or using methods such as the Rational Root Theorem, we can find that the factors of this polynomial include [tex]\( (x + 2) \)[/tex], [tex]\( (x + 1) \)[/tex], and [tex]\( (x - 2) \)[/tex].
This means we can write:
[tex]\[ x^3 + x^2 - 4x - 4 = (x + 2)(x + 1)(x - 2) \][/tex]
5. Find the remaining roots:
Solve for [tex]\( x \)[/tex] from the factored form:
[tex]\[ (x + 2) = 0 \quad \Rightarrow \quad x = -2 \][/tex]
[tex]\[ (x + 1) = 0 \quad \Rightarrow \quad x = -1 \][/tex]
[tex]\[ (x - 2) = 0 \quad \Rightarrow \quad x = 2 \][/tex]
6. Collect all roots:
Combining these solutions, we get the roots of the polynomial equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex]:
[tex]\[ x = -2, -1, 0, 2 \][/tex]
Therefore, the roots of the given equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex] are:
[tex]\[ \boxed{-2, -1, 0, 2} \][/tex]
1. Rewrite the equation:
Start with the given polynomial equation:
[tex]\[ x^4 + x^3 = 4x^2 + 4x \][/tex]
2. Bring all terms to one side:
To facilitate solving, we move all terms to one side of the equation:
[tex]\[ x^4 + x^3 - 4x^2 - 4x = 0 \][/tex]
3. Factor the polynomial:
To solve for [tex]\( x \)[/tex], we can try to factor the polynomial. Notice that all terms have a common factor, which is [tex]\( x \)[/tex]:
[tex]\[ x(x^3 + x^2 - 4x - 4) = 0 \][/tex]
This gives us one root directly:
[tex]\[ x = 0 \][/tex]
4. Solve the remaining polynomial:
Now, we need to solve the cubic equation:
[tex]\[ x^3 + x^2 - 4x - 4 = 0 \][/tex]
Through further factoring or using methods such as the Rational Root Theorem, we can find that the factors of this polynomial include [tex]\( (x + 2) \)[/tex], [tex]\( (x + 1) \)[/tex], and [tex]\( (x - 2) \)[/tex].
This means we can write:
[tex]\[ x^3 + x^2 - 4x - 4 = (x + 2)(x + 1)(x - 2) \][/tex]
5. Find the remaining roots:
Solve for [tex]\( x \)[/tex] from the factored form:
[tex]\[ (x + 2) = 0 \quad \Rightarrow \quad x = -2 \][/tex]
[tex]\[ (x + 1) = 0 \quad \Rightarrow \quad x = -1 \][/tex]
[tex]\[ (x - 2) = 0 \quad \Rightarrow \quad x = 2 \][/tex]
6. Collect all roots:
Combining these solutions, we get the roots of the polynomial equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex]:
[tex]\[ x = -2, -1, 0, 2 \][/tex]
Therefore, the roots of the given equation [tex]\( x^4 + x^3 = 4x^2 + 4x \)[/tex] are:
[tex]\[ \boxed{-2, -1, 0, 2} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.