Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the given functions and the statements one by one.
### Function [tex]\( f(x) \)[/tex]
Function [tex]\( f \)[/tex] is defined by the values given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & -12 & -4 & 0 & 2 & 3 \\ \hline \end{array} \][/tex]
### Function [tex]\( g(x) \)[/tex]
Function [tex]\( g \)[/tex] is given by the equation:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
### Analyzing Statements
1. The functions have the same [tex]\( y \)[/tex]-intercept.
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex].
For [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = -12 \][/tex]
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = -12 \left( \frac{1}{3} \right)^0 = -12 \][/tex]
Both functions have [tex]\( y \)[/tex]-intercept at [tex]\( (0, -12) \)[/tex]. Therefore, this statement is true.
2. The functions have the same [tex]\( x \)[/tex]-intercept.
The [tex]\( x \)[/tex]-intercept occurs when the function value is 0.
For [tex]\( f(x) \)[/tex]:
From the table, [tex]\( f(2) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) \)[/tex] is [tex]\( x = 2 \)[/tex].
For [tex]\( g(x) \)[/tex]:
[tex]\[ -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
This equation does not have any real solution because [tex]\( -12 \left( \frac{1}{3} \right)^x \)[/tex] never equals 0 for any real [tex]\( x \)[/tex]. Therefore, [tex]\( g(x) \)[/tex] has no [tex]\( x \)[/tex]-intercept.
Hence, this statement is false.
3. Both functions approach the same value as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex].
As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] for [tex]\( f(x) \)[/tex], the function values seem to increase slowly based on the table. For [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} g(x) = \lim_{x \to \infty} -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
Since function [tex]\( f(x) \)[/tex] does not converge to 0 based on the provided values, this statement is false.
4. Both functions are increasing on all intervals of [tex]\( x \)[/tex].
For [tex]\( f(x) \)[/tex], the table values show:
- [tex]\( f(0) = -12 \)[/tex] to [tex]\( f(1) = -4 \)[/tex] (increasing)
- [tex]\( f(1) = -4 \)[/tex] to [tex]\( f(2) = 0 \)[/tex] (increasing)
- [tex]\( f(2) = 0 \)[/tex] to [tex]\( f(3) = 2 \)[/tex] (increasing)
- [tex]\( f(3) = 2 \)[/tex] to [tex]\( f(4) = 3 \)[/tex] (increasing)
[tex]\( f(x) \)[/tex] is increasing on the given intervals.
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
As [tex]\( x \)[/tex] increases, [tex]\( \left( \frac{1}{3} \right)^x \)[/tex] decreases, making [tex]\( g(x) \)[/tex] more negative, indicating that [tex]\( g(x) \)[/tex] is decreasing.
Thus, this statement is false.
5. Both functions approach [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex].
For [tex]\( f(x) \)[/tex]:
Based on the table, we don't have information for negative [tex]\( x \)[/tex] values, so it's inconclusive for [tex]\( f(x) \)[/tex].
For [tex]\( g(x) \)[/tex]:
As [tex]\( x \to -\infty \)[/tex],
[tex]\[ \left( \frac{1}{3} \right)^x \to \infty \][/tex]
[tex]\[ -12 \left( \frac{1}{3} \right)^x \to -\infty \][/tex]
Therefore, [tex]\( g(x) \)[/tex] approaches [tex]\( -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
Without information for [tex]\( f \)[/tex], we cannot conclusively state that this is true for both functions. Hence, this statement is also false.
### Conclusion
The true statement about the functions is:
- The functions have the same [tex]\( y \)[/tex]-intercept.
Thus, only the first statement is true.
### Function [tex]\( f(x) \)[/tex]
Function [tex]\( f \)[/tex] is defined by the values given in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 & 3 & 4 \\ \hline f(x) & -12 & -4 & 0 & 2 & 3 \\ \hline \end{array} \][/tex]
### Function [tex]\( g(x) \)[/tex]
Function [tex]\( g \)[/tex] is given by the equation:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
### Analyzing Statements
1. The functions have the same [tex]\( y \)[/tex]-intercept.
The [tex]\( y \)[/tex]-intercept occurs when [tex]\( x = 0 \)[/tex].
For [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = -12 \][/tex]
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = -12 \left( \frac{1}{3} \right)^0 = -12 \][/tex]
Both functions have [tex]\( y \)[/tex]-intercept at [tex]\( (0, -12) \)[/tex]. Therefore, this statement is true.
2. The functions have the same [tex]\( x \)[/tex]-intercept.
The [tex]\( x \)[/tex]-intercept occurs when the function value is 0.
For [tex]\( f(x) \)[/tex]:
From the table, [tex]\( f(2) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept for [tex]\( f(x) \)[/tex] is [tex]\( x = 2 \)[/tex].
For [tex]\( g(x) \)[/tex]:
[tex]\[ -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
This equation does not have any real solution because [tex]\( -12 \left( \frac{1}{3} \right)^x \)[/tex] never equals 0 for any real [tex]\( x \)[/tex]. Therefore, [tex]\( g(x) \)[/tex] has no [tex]\( x \)[/tex]-intercept.
Hence, this statement is false.
3. Both functions approach the same value as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex].
As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] for [tex]\( f(x) \)[/tex], the function values seem to increase slowly based on the table. For [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} g(x) = \lim_{x \to \infty} -12 \left( \frac{1}{3} \right)^x = 0 \][/tex]
Since function [tex]\( f(x) \)[/tex] does not converge to 0 based on the provided values, this statement is false.
4. Both functions are increasing on all intervals of [tex]\( x \)[/tex].
For [tex]\( f(x) \)[/tex], the table values show:
- [tex]\( f(0) = -12 \)[/tex] to [tex]\( f(1) = -4 \)[/tex] (increasing)
- [tex]\( f(1) = -4 \)[/tex] to [tex]\( f(2) = 0 \)[/tex] (increasing)
- [tex]\( f(2) = 0 \)[/tex] to [tex]\( f(3) = 2 \)[/tex] (increasing)
- [tex]\( f(3) = 2 \)[/tex] to [tex]\( f(4) = 3 \)[/tex] (increasing)
[tex]\( f(x) \)[/tex] is increasing on the given intervals.
For [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = -12 \left( \frac{1}{3} \right)^x \][/tex]
As [tex]\( x \)[/tex] increases, [tex]\( \left( \frac{1}{3} \right)^x \)[/tex] decreases, making [tex]\( g(x) \)[/tex] more negative, indicating that [tex]\( g(x) \)[/tex] is decreasing.
Thus, this statement is false.
5. Both functions approach [tex]\( -\infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex].
For [tex]\( f(x) \)[/tex]:
Based on the table, we don't have information for negative [tex]\( x \)[/tex] values, so it's inconclusive for [tex]\( f(x) \)[/tex].
For [tex]\( g(x) \)[/tex]:
As [tex]\( x \to -\infty \)[/tex],
[tex]\[ \left( \frac{1}{3} \right)^x \to \infty \][/tex]
[tex]\[ -12 \left( \frac{1}{3} \right)^x \to -\infty \][/tex]
Therefore, [tex]\( g(x) \)[/tex] approaches [tex]\( -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
Without information for [tex]\( f \)[/tex], we cannot conclusively state that this is true for both functions. Hence, this statement is also false.
### Conclusion
The true statement about the functions is:
- The functions have the same [tex]\( y \)[/tex]-intercept.
Thus, only the first statement is true.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.