Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which statement must be true, let's analyze the logical implications given in the question.
We are given two implications:
1. [tex]\(a \Rightarrow b\)[/tex]
2. [tex]\(b \Rightarrow c\)[/tex]
We need to find out which of the provided statements must necessarily follow from these implications.
Step-by-Step Solution:
1. Implication Connection:
- If [tex]\(a \Rightarrow b\)[/tex], it means whenever [tex]\(a\)[/tex] is true, [tex]\(b\)[/tex] must also be true.
- If [tex]\(b \Rightarrow c\)[/tex], it means whenever [tex]\(b\)[/tex] is true, [tex]\(c\)[/tex] must also be true.
2. Transitivity of Implication:
- By the transitivity property of logical implications, if [tex]\(a \Rightarrow b\)[/tex] and [tex]\(b \Rightarrow c\)[/tex], then [tex]\(a \Rightarrow c\)[/tex] follows logically. This means whenever [tex]\(a\)[/tex] is true, [tex]\(c\)[/tex] must also be true.
3. Analyzing the choices:
- A. [tex]\( \neg a \Rightarrow \neg c \)[/tex]:
This statement does not necessarily follow from the given implications. The negation of an implication does not preserve the original logical structure in a straightforward way.
- B. [tex]\( a \Rightarrow c \)[/tex]:
This statement follows directly from the transitivity of the given implications. If [tex]\(a \Rightarrow b\)[/tex] and [tex]\(b \Rightarrow c\)[/tex], then [tex]\(a \Rightarrow c\)[/tex] must be true.
- C. [tex]\( c \Rightarrow a \)[/tex]:
This statement suggests a reverse implication, which is not guaranteed from the given information. The given implications do not provide a reason for [tex]\(c\)[/tex] to imply [tex]\(a\)[/tex].
- D. [tex]\( \neg a \Rightarrow c \)[/tex]:
This statement does not necessarily follow from the given implications. The relationship between the negation of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] is not something we can deduce from [tex]\(a \Rightarrow b\)[/tex] and [tex]\(b \Rightarrow c\)[/tex].
Given the logical analysis, the statement that must be true is:
B. [tex]\( a \Rightarrow c \)[/tex].
We are given two implications:
1. [tex]\(a \Rightarrow b\)[/tex]
2. [tex]\(b \Rightarrow c\)[/tex]
We need to find out which of the provided statements must necessarily follow from these implications.
Step-by-Step Solution:
1. Implication Connection:
- If [tex]\(a \Rightarrow b\)[/tex], it means whenever [tex]\(a\)[/tex] is true, [tex]\(b\)[/tex] must also be true.
- If [tex]\(b \Rightarrow c\)[/tex], it means whenever [tex]\(b\)[/tex] is true, [tex]\(c\)[/tex] must also be true.
2. Transitivity of Implication:
- By the transitivity property of logical implications, if [tex]\(a \Rightarrow b\)[/tex] and [tex]\(b \Rightarrow c\)[/tex], then [tex]\(a \Rightarrow c\)[/tex] follows logically. This means whenever [tex]\(a\)[/tex] is true, [tex]\(c\)[/tex] must also be true.
3. Analyzing the choices:
- A. [tex]\( \neg a \Rightarrow \neg c \)[/tex]:
This statement does not necessarily follow from the given implications. The negation of an implication does not preserve the original logical structure in a straightforward way.
- B. [tex]\( a \Rightarrow c \)[/tex]:
This statement follows directly from the transitivity of the given implications. If [tex]\(a \Rightarrow b\)[/tex] and [tex]\(b \Rightarrow c\)[/tex], then [tex]\(a \Rightarrow c\)[/tex] must be true.
- C. [tex]\( c \Rightarrow a \)[/tex]:
This statement suggests a reverse implication, which is not guaranteed from the given information. The given implications do not provide a reason for [tex]\(c\)[/tex] to imply [tex]\(a\)[/tex].
- D. [tex]\( \neg a \Rightarrow c \)[/tex]:
This statement does not necessarily follow from the given implications. The relationship between the negation of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] is not something we can deduce from [tex]\(a \Rightarrow b\)[/tex] and [tex]\(b \Rightarrow c\)[/tex].
Given the logical analysis, the statement that must be true is:
B. [tex]\( a \Rightarrow c \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.