Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To understand the relationship between the real zero(s) and [tex]\( x \)[/tex]-intercept(s) of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex], we need to analyze the numerator and denominator separately.
1. Finding the Real Zeros:
To find the real zeros (or roots) of the function, we need to set the numerator equal to zero:
[tex]\[ 3x(x - 1) = 0 \][/tex]
Solving this equation, we get:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Which simplifies to:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, the potential real zeros of the function are [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex].
2. Identifying the Domain Restrictions:
Next, we need to identify any [tex]\( x \)[/tex]-values that make the denominator zero because these values will indicate vertical asymptotes and are not in the domain of the function:
[tex]\[ x^2(x + 3)(x + 1) = 0 \][/tex]
This equation simplifies to the factors:
[tex]\[ x^2 = 0 \quad \text{or} \quad x + 3 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
Which gives us:
[tex]\[ x = 0 \quad \text{or} \quad x = -3 \quad \text{or} \quad x = -1 \][/tex]
Therefore, there are vertical asymptotes at [tex]\( x = 0 \)[/tex], [tex]\( x = -3 \)[/tex], and [tex]\( x = -1 \)[/tex].
3. Validating the Zeros:
Since zeros of the function cannot coincide with the vertical asymptotes, we disregard [tex]\( x = 0 \)[/tex] because it makes the denominator zero. Hence, it is not a valid zero.
The only valid zero that remains is [tex]\( x = 1 \)[/tex].
4. Determining the [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts of the function are the points where the graph crosses the [tex]\( x \)[/tex]-axis, which occur at the valid zeros of the function. For [tex]\( f(x) = \frac{3x(x - 1)}{x^2(x + 3)(x + 1)} \)[/tex], the only valid zero is [tex]\( x = 1 \)[/tex].
Therefore, the function has an [tex]\( x \)[/tex]-intercept at:
[tex]\[ (1, 0) \][/tex]
5. Summary:
- The real zero of the function is [tex]\( x = 1 \)[/tex].
- The corresponding [tex]\( x \)[/tex]-intercept is [tex]\( (1,0) \)[/tex].
- The vertical asymptotes of the function are at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
- There is no [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex] or [tex]\( x = -3 \)[/tex].
Hence, the graph of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex] has one [tex]\( x \)[/tex]-intercept at [tex]\( (1,0) \)[/tex] and vertical asymptotes at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
1. Finding the Real Zeros:
To find the real zeros (or roots) of the function, we need to set the numerator equal to zero:
[tex]\[ 3x(x - 1) = 0 \][/tex]
Solving this equation, we get:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Which simplifies to:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, the potential real zeros of the function are [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex].
2. Identifying the Domain Restrictions:
Next, we need to identify any [tex]\( x \)[/tex]-values that make the denominator zero because these values will indicate vertical asymptotes and are not in the domain of the function:
[tex]\[ x^2(x + 3)(x + 1) = 0 \][/tex]
This equation simplifies to the factors:
[tex]\[ x^2 = 0 \quad \text{or} \quad x + 3 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
Which gives us:
[tex]\[ x = 0 \quad \text{or} \quad x = -3 \quad \text{or} \quad x = -1 \][/tex]
Therefore, there are vertical asymptotes at [tex]\( x = 0 \)[/tex], [tex]\( x = -3 \)[/tex], and [tex]\( x = -1 \)[/tex].
3. Validating the Zeros:
Since zeros of the function cannot coincide with the vertical asymptotes, we disregard [tex]\( x = 0 \)[/tex] because it makes the denominator zero. Hence, it is not a valid zero.
The only valid zero that remains is [tex]\( x = 1 \)[/tex].
4. Determining the [tex]\( x \)[/tex]-Intercepts:
The [tex]\( x \)[/tex]-intercepts of the function are the points where the graph crosses the [tex]\( x \)[/tex]-axis, which occur at the valid zeros of the function. For [tex]\( f(x) = \frac{3x(x - 1)}{x^2(x + 3)(x + 1)} \)[/tex], the only valid zero is [tex]\( x = 1 \)[/tex].
Therefore, the function has an [tex]\( x \)[/tex]-intercept at:
[tex]\[ (1, 0) \][/tex]
5. Summary:
- The real zero of the function is [tex]\( x = 1 \)[/tex].
- The corresponding [tex]\( x \)[/tex]-intercept is [tex]\( (1,0) \)[/tex].
- The vertical asymptotes of the function are at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
- There is no [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex] or [tex]\( x = -3 \)[/tex].
Hence, the graph of the function [tex]\( f(x) = \frac{3x(x-1)}{x^2(x+3)(x+1)} \)[/tex] has one [tex]\( x \)[/tex]-intercept at [tex]\( (1,0) \)[/tex] and vertical asymptotes at [tex]\( x = -3 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = 0 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.