At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Given:
- The force of repulsion between two like-charged objects [tex]\( F = 8.2 \times 10^{-7} \)[/tex] newtons.
- The charge on each object [tex]\( q_1 = q_2 = 6.7 \times 10^{-9} \)[/tex] coulombs.
- The electrostatic constant [tex]\( k = 9.0 \times 10^9 \)[/tex] Nm²/C².
To find: The distance [tex]\( r \)[/tex] between the two charges.
We use Coulomb's Law, which relates the force between two point charges to the distance between them:
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex]. Rearranging the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]
Plugging in the values:
[tex]\[ r^2 = \frac{(9.0 \times 10^9) \times (6.7 \times 10^{-9}) \times (6.7 \times 10^{-9})}{8.2 \times 10^{-7}} \][/tex]
Evaluating the expression under the square root:
[tex]\[ r^2 \approx 0.49269512195121967 \][/tex]
Taking the square root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{0.49269512195121967} \approx 0.7019224472484262 \, \text{meters} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.70 \)[/tex] meters. The correct answer is:
B. 0.70 meters
- The force of repulsion between two like-charged objects [tex]\( F = 8.2 \times 10^{-7} \)[/tex] newtons.
- The charge on each object [tex]\( q_1 = q_2 = 6.7 \times 10^{-9} \)[/tex] coulombs.
- The electrostatic constant [tex]\( k = 9.0 \times 10^9 \)[/tex] Nm²/C².
To find: The distance [tex]\( r \)[/tex] between the two charges.
We use Coulomb's Law, which relates the force between two point charges to the distance between them:
[tex]\[ F = k \frac{q_1 q_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex]. Rearranging the formula to isolate [tex]\( r \)[/tex]:
[tex]\[ r^2 = k \frac{q_1 q_2}{F} \][/tex]
Plugging in the values:
[tex]\[ r^2 = \frac{(9.0 \times 10^9) \times (6.7 \times 10^{-9}) \times (6.7 \times 10^{-9})}{8.2 \times 10^{-7}} \][/tex]
Evaluating the expression under the square root:
[tex]\[ r^2 \approx 0.49269512195121967 \][/tex]
Taking the square root of both sides to find [tex]\( r \)[/tex]:
[tex]\[ r \approx \sqrt{0.49269512195121967} \approx 0.7019224472484262 \, \text{meters} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.70 \)[/tex] meters. The correct answer is:
B. 0.70 meters
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.