Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which ordered pair, if any, needs to be removed for the mapping to represent a function, we must verify the definition of a function. In mathematics, a function is defined as a relationship where each input [tex]\( x \)[/tex] has a unique output [tex]\( y \)[/tex].
1. Let's list the given ordered pairs:
[tex]\[ (-3, -4), (-2, -1), (1, -3), (3, 7) \][/tex]
2. Extract and list the [tex]\( x \)[/tex]-values from these pairs:
[tex]\[ -3, -2, 1, 3 \][/tex]
3. Determine if any [tex]\( x \)[/tex]-values are repeated:
- [tex]\( -3 \)[/tex] appears once.
- [tex]\( -2 \)[/tex] appears once.
- [tex]\( 1 \)[/tex] appears once.
- [tex]\( 3 \)[/tex] appears once.
Since all [tex]\( x \)[/tex]-values are unique, each input is associated with exactly one output. Therefore, no repeated [tex]\( x \)[/tex]-values exist among the ordered pairs. This confirms that the relationship as given already satisfies the definition of a function.
Thus, there is no need to remove any ordered pair. The mapping already represents a function.
So, the conclusion is:
[tex]\[ \boxed{\text{None}} \][/tex]
1. Let's list the given ordered pairs:
[tex]\[ (-3, -4), (-2, -1), (1, -3), (3, 7) \][/tex]
2. Extract and list the [tex]\( x \)[/tex]-values from these pairs:
[tex]\[ -3, -2, 1, 3 \][/tex]
3. Determine if any [tex]\( x \)[/tex]-values are repeated:
- [tex]\( -3 \)[/tex] appears once.
- [tex]\( -2 \)[/tex] appears once.
- [tex]\( 1 \)[/tex] appears once.
- [tex]\( 3 \)[/tex] appears once.
Since all [tex]\( x \)[/tex]-values are unique, each input is associated with exactly one output. Therefore, no repeated [tex]\( x \)[/tex]-values exist among the ordered pairs. This confirms that the relationship as given already satisfies the definition of a function.
Thus, there is no need to remove any ordered pair. The mapping already represents a function.
So, the conclusion is:
[tex]\[ \boxed{\text{None}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.