Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's draw the graph of the function [tex]\( f(x) = 5^{x-2} + 2 \)[/tex] step by step:
### Step 1: Understanding the Function
The given function [tex]\( f(x) = 5^{x-2} + 2 \)[/tex] is an exponential function. The general form of an exponential function is [tex]\( f(x) = a^{b(x-c)} + d \)[/tex], where
- [tex]\( a \)[/tex] is the base of the exponential function (5 in this case),
- [tex]\( b \)[/tex] determines the growth rate,
- [tex]\( c \)[/tex] is the horizontal shift,
- [tex]\( d \)[/tex] is the vertical shift.
For [tex]\( f(x) = 5^{x-2} + 2 \)[/tex]:
- [tex]\( 5 \)[/tex] is the base,
- The exponent [tex]\( x-2 \)[/tex] indicates a horizontal shift of 2 units to the right,
- The constant [tex]\( +2 \)[/tex] represents a vertical shift of 2 units upward.
### Step 2: Identify Key Points
We can find some key points on the graph by plugging in different values of [tex]\( x \)[/tex]:
1. At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 5^{0-2} + 2 = 5^{-2} + 2 = \frac{1}{25} + 2 \approx 2.04 \][/tex]
2. At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5^{2-2} + 2 = 5^0 + 2 = 1 + 2 = 3 \][/tex]
3. At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 5^{4-2} + 2 = 5^2 + 2 = 25 + 2 = 27 \][/tex]
4. At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 5^{1-2} + 2 = 5^{-1} + 2 = \frac{1}{5} + 2 = 2.2 \][/tex]
5. At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 5^{3-2} + 2 = 5^1 + 2 = 5 + 2 = 7 \][/tex]
### Step 3: Sketching the Graph
1. Plot the points computed in Step 2 on a coordinate plane.
- [tex]\( (0, 2.04) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (4, 27) \)[/tex]
- [tex]\( (1, 2.2) \)[/tex]
- [tex]\( (3, 7) \)[/tex]
2. Draw the curve through the points. Remember the nature of the exponential function:
- The function approaches [tex]\( y = 2 \)[/tex] (the vertical shift) as [tex]\( x \)[/tex] becomes more negative, but never actually reaches it. This is the horizontal asymptote.
- The function will rise steeply as [tex]\( x \)[/tex] increases since the base of the exponent (5) is greater than 1.
### Step 4: Analyzing the Graph
- Horizontal Asymptote: The function [tex]\( f(x) = 5^{x-2} + 2 \)[/tex] has a horizontal asymptote at [tex]\( y = 2 \)[/tex].
- Behavior:
- For [tex]\( x < 2 \)[/tex], the function value is close to 2.
- For [tex]\( x > 2 \)[/tex], the function value increases rapidly.
### Final Sketch:
Here's a rough sketch of the graph based on these points and properties:
```
y
29 |
27 |------------------------------------------(4,27)
25 |
23 |
21 |
19 |
17 |
15 |
13 |
11 |
9 |
7 | (3,7)
5 |
3 | (2,3)
2 |
1 |--------------------------(1,2.2)-----*
-1 ____________________________________________ x
-1 0 2 3 4 5
(0,2.04)
As you can see, the graph crosses the y-intercept just above 2 and rapidly rises as x increases due to the exponential nature of the function.
### Step 1: Understanding the Function
The given function [tex]\( f(x) = 5^{x-2} + 2 \)[/tex] is an exponential function. The general form of an exponential function is [tex]\( f(x) = a^{b(x-c)} + d \)[/tex], where
- [tex]\( a \)[/tex] is the base of the exponential function (5 in this case),
- [tex]\( b \)[/tex] determines the growth rate,
- [tex]\( c \)[/tex] is the horizontal shift,
- [tex]\( d \)[/tex] is the vertical shift.
For [tex]\( f(x) = 5^{x-2} + 2 \)[/tex]:
- [tex]\( 5 \)[/tex] is the base,
- The exponent [tex]\( x-2 \)[/tex] indicates a horizontal shift of 2 units to the right,
- The constant [tex]\( +2 \)[/tex] represents a vertical shift of 2 units upward.
### Step 2: Identify Key Points
We can find some key points on the graph by plugging in different values of [tex]\( x \)[/tex]:
1. At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 5^{0-2} + 2 = 5^{-2} + 2 = \frac{1}{25} + 2 \approx 2.04 \][/tex]
2. At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5^{2-2} + 2 = 5^0 + 2 = 1 + 2 = 3 \][/tex]
3. At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 5^{4-2} + 2 = 5^2 + 2 = 25 + 2 = 27 \][/tex]
4. At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 5^{1-2} + 2 = 5^{-1} + 2 = \frac{1}{5} + 2 = 2.2 \][/tex]
5. At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 5^{3-2} + 2 = 5^1 + 2 = 5 + 2 = 7 \][/tex]
### Step 3: Sketching the Graph
1. Plot the points computed in Step 2 on a coordinate plane.
- [tex]\( (0, 2.04) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (4, 27) \)[/tex]
- [tex]\( (1, 2.2) \)[/tex]
- [tex]\( (3, 7) \)[/tex]
2. Draw the curve through the points. Remember the nature of the exponential function:
- The function approaches [tex]\( y = 2 \)[/tex] (the vertical shift) as [tex]\( x \)[/tex] becomes more negative, but never actually reaches it. This is the horizontal asymptote.
- The function will rise steeply as [tex]\( x \)[/tex] increases since the base of the exponent (5) is greater than 1.
### Step 4: Analyzing the Graph
- Horizontal Asymptote: The function [tex]\( f(x) = 5^{x-2} + 2 \)[/tex] has a horizontal asymptote at [tex]\( y = 2 \)[/tex].
- Behavior:
- For [tex]\( x < 2 \)[/tex], the function value is close to 2.
- For [tex]\( x > 2 \)[/tex], the function value increases rapidly.
### Final Sketch:
Here's a rough sketch of the graph based on these points and properties:
```
y
29 |
27 |------------------------------------------(4,27)
25 |
23 |
21 |
19 |
17 |
15 |
13 |
11 |
9 |
7 | (3,7)
5 |
3 | (2,3)
2 |
1 |--------------------------(1,2.2)-----*
-1 ____________________________________________ x
-1 0 2 3 4 5
(0,2.04)
As you can see, the graph crosses the y-intercept just above 2 and rapidly rises as x increases due to the exponential nature of the function.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.