At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factor the polynomial [tex]\( x^4 + 2x^3 - 7x^2 - 8x + 12 \)[/tex] with the given factor [tex]\((x - 2)\)[/tex]:
1. Polynomial Division:
We start by dividing the polynomial [tex]\( x^4 + 2x^3 - 7x^2 - 8x + 12 \)[/tex] by [tex]\( x - 2 \)[/tex].
The quotient from this division is [tex]\( x^3 + 4x^2 + x - 6 \)[/tex].
2. Factoring the Quotient Polynomial:
Now we need to factor [tex]\( x^3 + 4x^2 + x - 6 \)[/tex].
3. Finding the Factors:
After factoring [tex]\( x^3 + 4x^2 + x - 6 \)[/tex], we get the factors [tex]\( (x - 1) \)[/tex], [tex]\( (x + 2) \)[/tex], and [tex]\( (x + 3) \)[/tex].
So, the other factors of the polynomial [tex]\( x^4 + 2x^3 - 7x^2 - 8x + 12 \)[/tex] besides [tex]\( (x - 2) \)[/tex] are:
[Choose [tex]\( x + 2 \)[/tex]],
[Choose [tex]\( x + 3 \)[/tex]], and
[Choose [tex]\( x - 1 \)[/tex]].
1. Polynomial Division:
We start by dividing the polynomial [tex]\( x^4 + 2x^3 - 7x^2 - 8x + 12 \)[/tex] by [tex]\( x - 2 \)[/tex].
The quotient from this division is [tex]\( x^3 + 4x^2 + x - 6 \)[/tex].
2. Factoring the Quotient Polynomial:
Now we need to factor [tex]\( x^3 + 4x^2 + x - 6 \)[/tex].
3. Finding the Factors:
After factoring [tex]\( x^3 + 4x^2 + x - 6 \)[/tex], we get the factors [tex]\( (x - 1) \)[/tex], [tex]\( (x + 2) \)[/tex], and [tex]\( (x + 3) \)[/tex].
So, the other factors of the polynomial [tex]\( x^4 + 2x^3 - 7x^2 - 8x + 12 \)[/tex] besides [tex]\( (x - 2) \)[/tex] are:
[Choose [tex]\( x + 2 \)[/tex]],
[Choose [tex]\( x + 3 \)[/tex]], and
[Choose [tex]\( x - 1 \)[/tex]].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.