Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is the difference?

[tex]\[ \frac{x}{x^2 - 2x - 15} - \frac{4}{x^2 + 2x - 35} \][/tex]


Sagot :

To determine the difference between the two fractions [tex]\( \frac{x}{x^2 - 2x - 15} \)[/tex] and [tex]\( \frac{4}{x^2 + 2x - 35} \)[/tex], follow these steps:

1. Factorize the Denominators:
- For [tex]\( x^2 - 2x - 15 \)[/tex]:
[tex]\[ x^2 - 2x - 15 = (x - 5)(x + 3) \][/tex]
- For [tex]\( x^2 + 2x - 35 \)[/tex]:
[tex]\[ x^2 + 2x - 35 = (x + 7)(x - 5) \][/tex]

2. Determine the Common Denominator:
- The common denominator for both fractions will be the product of the two individual denominators:
[tex]\[ (x - 5)(x + 3)(x + 7) \][/tex]

3. Adjust the Numerators:
- Adjust the numerator of the first fraction to have the common denominator:
[tex]\[ \frac{x}{(x - 5)(x + 3)} = \frac{x \cdot (x + 7)}{(x - 5)(x + 3)(x + 7)} = \frac{x(x + 7)}{(x - 5)(x + 3)(x + 7)} \][/tex]
Simplify the numerator:
[tex]\[ x(x + 7) = x^2 + 7x \][/tex]
So, it becomes:
[tex]\[ \frac{x^2 + 7x}{(x - 5)(x + 3)(x + 7)} \][/tex]

- For the second fraction:
[tex]\[ \frac{4}{(x + 7)(x - 5)} = \frac{4 \cdot (x + 3)}{(x - 5)(x + 3)(x + 7)} = \frac{4(x + 3)}{(x - 5)(x + 3)(x + 7)} \][/tex]
Simplify the numerator:
[tex]\[ 4(x + 3) = 4x + 12 \][/tex]
So, it becomes:
[tex]\[ \frac{4x + 12}{(x - 5)(x + 3)(x + 7)} \][/tex]

4. Subtract the Numerators:
- Now we subtract the two fractions with the common denominator:
[tex]\[ \frac{x^2 + 7x}{(x - 5)(x + 3)(x + 7)} - \frac{4x + 12}{(x - 5)(x + 3)(x + 7)} = \frac{(x^2 + 7x) - (4x + 12)}{(x - 5)(x + 3)(x + 7)} \][/tex]

5. Combine and Simplify the Numerator:
- Combine the numerators:
[tex]\[ (x^2 + 7x) - (4x + 12) = x^2 + 7x - 4x - 12 = x^2 + 3x - 12 \][/tex]

6. Write the Final Result:
- The difference between the two fractions is:
[tex]\[ \frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)} \][/tex]

So the simplified difference is

[tex]\[ \frac{x^2 + 3x - 12}{(x - 5)(x + 3)(x + 7)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.