Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex], we must follow these steps:
1. Identify the slope of the given line. The general form of the line equation [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Looking at the given equation [tex]\(y = \frac{1}{5} x + 4\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].
2. Recognize that a line parallel to the given line will have the same slope. Therefore, the slope of our new line will also be [tex]\(\frac{1}{5}\)[/tex].
3. Next, we need to find the y-intercept [tex]\(b\)[/tex] for our new line. We have the slope [tex]\(m = \frac{1}{5}\)[/tex] and a point [tex]\((-2, 2)\)[/tex] through which the line passes.
4. Substitute the point [tex]\((-2, 2)\)[/tex] into the equation [tex]\(y = mx + b\)[/tex] to find the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 2 = \frac{1}{5}(-2) + b \][/tex]
5. Solve for [tex]\(b\)[/tex]:
[tex]\[ 2 = -\frac{2}{5} + b \][/tex]
To isolate [tex]\(b\)[/tex], add [tex]\(\frac{2}{5}\)[/tex] to both sides:
[tex]\[ 2 + \frac{2}{5} = b \][/tex]
6. Convert [tex]\(2\)[/tex] to a fraction with a common denominator to facilitate addition:
[tex]\[ 2 = \frac{10}{5} \][/tex]
Thus,
[tex]\[ \frac{10}{5} + \frac{2}{5} = b \][/tex]
7. Add the fractions:
[tex]\[ b = \frac{12}{5} \][/tex]
8. Substitute the slope [tex]\(m = \frac{1}{5}\)[/tex] and the y-intercept [tex]\(b = \frac{12}{5}\)[/tex] back into the slope-intercept form of the line equation:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
Therefore, the equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex] is:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
1. Identify the slope of the given line. The general form of the line equation [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Looking at the given equation [tex]\(y = \frac{1}{5} x + 4\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].
2. Recognize that a line parallel to the given line will have the same slope. Therefore, the slope of our new line will also be [tex]\(\frac{1}{5}\)[/tex].
3. Next, we need to find the y-intercept [tex]\(b\)[/tex] for our new line. We have the slope [tex]\(m = \frac{1}{5}\)[/tex] and a point [tex]\((-2, 2)\)[/tex] through which the line passes.
4. Substitute the point [tex]\((-2, 2)\)[/tex] into the equation [tex]\(y = mx + b\)[/tex] to find the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 2 = \frac{1}{5}(-2) + b \][/tex]
5. Solve for [tex]\(b\)[/tex]:
[tex]\[ 2 = -\frac{2}{5} + b \][/tex]
To isolate [tex]\(b\)[/tex], add [tex]\(\frac{2}{5}\)[/tex] to both sides:
[tex]\[ 2 + \frac{2}{5} = b \][/tex]
6. Convert [tex]\(2\)[/tex] to a fraction with a common denominator to facilitate addition:
[tex]\[ 2 = \frac{10}{5} \][/tex]
Thus,
[tex]\[ \frac{10}{5} + \frac{2}{5} = b \][/tex]
7. Add the fractions:
[tex]\[ b = \frac{12}{5} \][/tex]
8. Substitute the slope [tex]\(m = \frac{1}{5}\)[/tex] and the y-intercept [tex]\(b = \frac{12}{5}\)[/tex] back into the slope-intercept form of the line equation:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
Therefore, the equation of the line that is parallel to the given line and passes through the point [tex]\((-2, 2)\)[/tex] is:
[tex]\[ y = \frac{1}{5} x + \frac{12}{5} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.