Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the standard deviation of the distribution for the number of free throws made out of 8 attempts, we proceed through the following steps:
1. Calculate the Mean (Expected Value) [tex]\( E(X) \)[/tex]:
The mean [tex]\(\mu\)[/tex] is given by the sum of each value of [tex]\(X\)[/tex] multiplied by its respective probability:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
Where [tex]\( x_i \)[/tex] represents the number of free throws made and [tex]\( P(x_i) \)[/tex] represents the probability of making [tex]\( x_i \)[/tex] free throws.
Given:
[tex]\[ \{ X = 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \][/tex]
and their respective probabilities:
[tex]\[ \{ P(X) = 0.002, 0.008, 0.04, 0.12, 0.23, 0.28, 0.21, 0.09, 0.02 \} \][/tex]
Calculate the mean:
[tex]\[ \mu = (0 \cdot 0.002) + (1 \cdot 0.008) + (2 \cdot 0.04) + (3 \cdot 0.12) + (4 \cdot 0.23) + (5 \cdot 0.28) + (6 \cdot 0.21) + (7 \cdot 0.09) + (8 \cdot 0.02) \approx 4.818 \][/tex]
2. Calculate the Variance [tex]\( \sigma^2 \)[/tex]:
The variance is given by:
[tex]\[ \sigma^2 = \sum ((x_i - \mu)^2 \cdot P(x_i)) \][/tex]
Using the mean [tex]\(\mu \approx 4.818\)[/tex], we compute each term [tex]\((x_i - \mu)^2\)[/tex], multiply it by the corresponding probability [tex]\(P(x_i)\)[/tex], and sum:
[tex]\[ \sigma^2 = ((0 - 4.818)^2 \cdot 0.002) + ((1 - 4.818)^2 \cdot 0.008) + ((2 - 4.818)^2 \cdot 0.04) + ... + ((8 - 4.818)^2 \cdot 0.02) \approx 1.965 \][/tex]
3. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]:
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \approx \sqrt{1.965} \approx 1.401 \][/tex]
Given these computations:
- The mean of the distribution is approximately [tex]\(4.818\)[/tex],
- The variance of the distribution is approximately [tex]\(1.965\)[/tex],
- The standard deviation of the distribution is approximately [tex]\(1.401\)[/tex].
Therefore, the standard deviation of the distribution, closest to the options provided, is [tex]\(1.40\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{1.40} \][/tex]
1. Calculate the Mean (Expected Value) [tex]\( E(X) \)[/tex]:
The mean [tex]\(\mu\)[/tex] is given by the sum of each value of [tex]\(X\)[/tex] multiplied by its respective probability:
[tex]\[ \mu = \sum (x_i \cdot P(x_i)) \][/tex]
Where [tex]\( x_i \)[/tex] represents the number of free throws made and [tex]\( P(x_i) \)[/tex] represents the probability of making [tex]\( x_i \)[/tex] free throws.
Given:
[tex]\[ \{ X = 0, 1, 2, 3, 4, 5, 6, 7, 8 \} \][/tex]
and their respective probabilities:
[tex]\[ \{ P(X) = 0.002, 0.008, 0.04, 0.12, 0.23, 0.28, 0.21, 0.09, 0.02 \} \][/tex]
Calculate the mean:
[tex]\[ \mu = (0 \cdot 0.002) + (1 \cdot 0.008) + (2 \cdot 0.04) + (3 \cdot 0.12) + (4 \cdot 0.23) + (5 \cdot 0.28) + (6 \cdot 0.21) + (7 \cdot 0.09) + (8 \cdot 0.02) \approx 4.818 \][/tex]
2. Calculate the Variance [tex]\( \sigma^2 \)[/tex]:
The variance is given by:
[tex]\[ \sigma^2 = \sum ((x_i - \mu)^2 \cdot P(x_i)) \][/tex]
Using the mean [tex]\(\mu \approx 4.818\)[/tex], we compute each term [tex]\((x_i - \mu)^2\)[/tex], multiply it by the corresponding probability [tex]\(P(x_i)\)[/tex], and sum:
[tex]\[ \sigma^2 = ((0 - 4.818)^2 \cdot 0.002) + ((1 - 4.818)^2 \cdot 0.008) + ((2 - 4.818)^2 \cdot 0.04) + ... + ((8 - 4.818)^2 \cdot 0.02) \approx 1.965 \][/tex]
3. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]:
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \approx \sqrt{1.965} \approx 1.401 \][/tex]
Given these computations:
- The mean of the distribution is approximately [tex]\(4.818\)[/tex],
- The variance of the distribution is approximately [tex]\(1.965\)[/tex],
- The standard deviation of the distribution is approximately [tex]\(1.401\)[/tex].
Therefore, the standard deviation of the distribution, closest to the options provided, is [tex]\(1.40\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{1.40} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.