Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the horizontal asymptote of the rational function [tex]\(y = \frac{6x - 18}{x + 9}\)[/tex], follow these steps:
1. Identify the degree of the numerator and the denominator:
- The numerator is [tex]\(6x - 18\)[/tex], which is a polynomial of degree 1.
- The denominator is [tex]\(x + 9\)[/tex], which is also a polynomial of degree 1.
2. Determine the leading terms of the numerator and the denominator:
- The leading term in the numerator is [tex]\(6x\)[/tex].
- The leading term in the denominator is [tex]\(x\)[/tex].
3. Divide the leading coefficients of the highest degree terms:
- The coefficient of [tex]\(x\)[/tex] in the numerator is [tex]\(6\)[/tex].
- The coefficient of [tex]\(x\)[/tex] in the denominator is [tex]\(1\)[/tex].
4. Find the horizontal asymptote by dividing these coefficients:
[tex]\[ \text{Horizontal Asymptote} = \frac{\text{Numerator's leading coefficient}}{\text{Denominator's leading coefficient}} = \frac{6}{1} = 6 \][/tex]
So, the horizontal asymptote of the function [tex]\(y = \frac{6x - 18}{x + 9}\)[/tex] is [tex]\(y = 6\)[/tex].
1. Identify the degree of the numerator and the denominator:
- The numerator is [tex]\(6x - 18\)[/tex], which is a polynomial of degree 1.
- The denominator is [tex]\(x + 9\)[/tex], which is also a polynomial of degree 1.
2. Determine the leading terms of the numerator and the denominator:
- The leading term in the numerator is [tex]\(6x\)[/tex].
- The leading term in the denominator is [tex]\(x\)[/tex].
3. Divide the leading coefficients of the highest degree terms:
- The coefficient of [tex]\(x\)[/tex] in the numerator is [tex]\(6\)[/tex].
- The coefficient of [tex]\(x\)[/tex] in the denominator is [tex]\(1\)[/tex].
4. Find the horizontal asymptote by dividing these coefficients:
[tex]\[ \text{Horizontal Asymptote} = \frac{\text{Numerator's leading coefficient}}{\text{Denominator's leading coefficient}} = \frac{6}{1} = 6 \][/tex]
So, the horizontal asymptote of the function [tex]\(y = \frac{6x - 18}{x + 9}\)[/tex] is [tex]\(y = 6\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.
What current solutions the world's leaders have suggested for slowing the growth of world population