At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the average rate of change for the exponential function in the interval from [tex]\( x = 3 \)[/tex] to [tex]\( x = 5 \)[/tex], follow these steps:
1. Identify the values of [tex]\( y \)[/tex] at the given [tex]\( x \)[/tex]-values from the table.
- For [tex]\( x = 3 \)[/tex], the corresponding [tex]\( y \)[/tex]-value is [tex]\( y_3 = 13 \)[/tex].
- For [tex]\( x = 5 \)[/tex], the corresponding [tex]\( y \)[/tex]-value is [tex]\( y_5 = 37 \)[/tex].
2. Use the formula for the average rate of change, which is similar to finding the slope of the line connecting the two points [tex]\((x_3, y_3)\)[/tex] and [tex]\((x_5, y_5)\)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{y_5 - y_3}{x_5 - x_3} \][/tex]
3. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{37 - 13}{5 - 3} \][/tex]
4. Perform the arithmetic operations:
[tex]\[ \text{Average rate of change} = \frac{24}{2} = 12 \][/tex]
Therefore, the average rate of change for the function in the interval from [tex]\( x = 3 \)[/tex] to [tex]\( x = 5 \)[/tex] is 12, which corresponds to option C.
Answer: C [tex]\( 12 \)[/tex]
1. Identify the values of [tex]\( y \)[/tex] at the given [tex]\( x \)[/tex]-values from the table.
- For [tex]\( x = 3 \)[/tex], the corresponding [tex]\( y \)[/tex]-value is [tex]\( y_3 = 13 \)[/tex].
- For [tex]\( x = 5 \)[/tex], the corresponding [tex]\( y \)[/tex]-value is [tex]\( y_5 = 37 \)[/tex].
2. Use the formula for the average rate of change, which is similar to finding the slope of the line connecting the two points [tex]\((x_3, y_3)\)[/tex] and [tex]\((x_5, y_5)\)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{y_5 - y_3}{x_5 - x_3} \][/tex]
3. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{37 - 13}{5 - 3} \][/tex]
4. Perform the arithmetic operations:
[tex]\[ \text{Average rate of change} = \frac{24}{2} = 12 \][/tex]
Therefore, the average rate of change for the function in the interval from [tex]\( x = 3 \)[/tex] to [tex]\( x = 5 \)[/tex] is 12, which corresponds to option C.
Answer: C [tex]\( 12 \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.