At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the inequality [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we need to find the values of [tex]\(x\)[/tex] for which the expression is non-negative. We'll do this by following these steps:
1. Identify Critical Points: These are the values of [tex]\(x\)[/tex] where the numerator or denominator equals zero.
2. Determine Sign Changes: We need to examine the sign of the expression in each interval created by these critical points.
3. Construct the Solution: Based on the signs, we can determine the intervals where the expression is non-negative.
### 1. Identify Critical Points
Numerator:
[tex]\[ (x + 5)(x + 1) = 0 \][/tex]
This gives us two solutions:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
Denominator:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
### 2. Determine Sign Changes
Now, we have the critical points: [tex]\(x = -5\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 4\)[/tex]. These points divide the number line into four intervals:
- [tex]\( (-\infty, -5) \)[/tex]
- [tex]\( (-5, -1) \)[/tex]
- [tex]\( (-1, 4) \)[/tex]
- [tex]\( (4, \infty) \)[/tex]
We will test a point within each interval to determine whether the expression is positive or negative in that interval.
- For [tex]\(x < -5\)[/tex], pick [tex]\(x = -6\)[/tex]:
[tex]\[ \frac{(-6 + 5)(-6 + 1)}{-6 - 4} = \frac{(-1)(-5)}{-10} = \frac{5}{-10} = -0.5 \quad \text{(negative)} \][/tex]
- For [tex]\(-5 < x < -1\)[/tex], pick [tex]\(x = -3\)[/tex]:
[tex]\[ \frac{(-3 + 5)(-3 + 1)}{-3 - 4} = \frac{(2)(-2)}{-7} = \frac{-4}{-7} = \frac{4}{7} \quad \text{(positive)} \][/tex]
- For [tex]\(-1 < x < 4\)[/tex], pick [tex]\(x = 0\)[/tex]:
[tex]\[ \frac{(0 + 5)(0 + 1)}{0 - 4} = \frac{(5)(1)}{-4} = \frac{5}{-4} = -1.25 \quad \text{(negative)} \][/tex]
- For [tex]\(x > 4\)[/tex], pick [tex]\(x = 5\)[/tex]:
[tex]\[ \frac{(5 + 5)(5 + 1)}{5 - 4} = \frac{(10)(6)}{1} = 60 \quad \text{(positive)} \][/tex]
### 3. Construct the Solution
From our test points, we have determined that the expression is:
- Negative for [tex]\(x < -5\)[/tex]
- Positive for [tex]\(-5 < x < -1\)[/tex]
- Negative for [tex]\(-1 < x < 4\)[/tex]
- Positive for [tex]\(x > 4\)[/tex]
Finally, since we need [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we include the intervals where the expression is positive and also check if the critical points themselves are included:
- [tex]\(x = -5\)[/tex] and [tex]\(x = -1\)[/tex] make the numerator zero, thus satisfying the inequality.
- [tex]\(x = 4\)[/tex] makes the denominator zero, which must be excluded.
Therefore, the solution to the inequality is:
[tex]\[ -5 \leq x \leq -1 \][/tex]
1. Identify Critical Points: These are the values of [tex]\(x\)[/tex] where the numerator or denominator equals zero.
2. Determine Sign Changes: We need to examine the sign of the expression in each interval created by these critical points.
3. Construct the Solution: Based on the signs, we can determine the intervals where the expression is non-negative.
### 1. Identify Critical Points
Numerator:
[tex]\[ (x + 5)(x + 1) = 0 \][/tex]
This gives us two solutions:
[tex]\[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
Denominator:
[tex]\[ x - 4 = 0 \quad \Rightarrow \quad x = 4 \][/tex]
### 2. Determine Sign Changes
Now, we have the critical points: [tex]\(x = -5\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 4\)[/tex]. These points divide the number line into four intervals:
- [tex]\( (-\infty, -5) \)[/tex]
- [tex]\( (-5, -1) \)[/tex]
- [tex]\( (-1, 4) \)[/tex]
- [tex]\( (4, \infty) \)[/tex]
We will test a point within each interval to determine whether the expression is positive or negative in that interval.
- For [tex]\(x < -5\)[/tex], pick [tex]\(x = -6\)[/tex]:
[tex]\[ \frac{(-6 + 5)(-6 + 1)}{-6 - 4} = \frac{(-1)(-5)}{-10} = \frac{5}{-10} = -0.5 \quad \text{(negative)} \][/tex]
- For [tex]\(-5 < x < -1\)[/tex], pick [tex]\(x = -3\)[/tex]:
[tex]\[ \frac{(-3 + 5)(-3 + 1)}{-3 - 4} = \frac{(2)(-2)}{-7} = \frac{-4}{-7} = \frac{4}{7} \quad \text{(positive)} \][/tex]
- For [tex]\(-1 < x < 4\)[/tex], pick [tex]\(x = 0\)[/tex]:
[tex]\[ \frac{(0 + 5)(0 + 1)}{0 - 4} = \frac{(5)(1)}{-4} = \frac{5}{-4} = -1.25 \quad \text{(negative)} \][/tex]
- For [tex]\(x > 4\)[/tex], pick [tex]\(x = 5\)[/tex]:
[tex]\[ \frac{(5 + 5)(5 + 1)}{5 - 4} = \frac{(10)(6)}{1} = 60 \quad \text{(positive)} \][/tex]
### 3. Construct the Solution
From our test points, we have determined that the expression is:
- Negative for [tex]\(x < -5\)[/tex]
- Positive for [tex]\(-5 < x < -1\)[/tex]
- Negative for [tex]\(-1 < x < 4\)[/tex]
- Positive for [tex]\(x > 4\)[/tex]
Finally, since we need [tex]\(\frac{(x+5)(x+1)}{x-4} \geq 0\)[/tex], we include the intervals where the expression is positive and also check if the critical points themselves are included:
- [tex]\(x = -5\)[/tex] and [tex]\(x = -1\)[/tex] make the numerator zero, thus satisfying the inequality.
- [tex]\(x = 4\)[/tex] makes the denominator zero, which must be excluded.
Therefore, the solution to the inequality is:
[tex]\[ -5 \leq x \leq -1 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.