At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's perform the operation and simplify the given expression step by step.
Step 1: Write down the given expression.
[tex]\[ \frac{x^2 + 10x + 24}{3x^2 + 3x} \div (x + 6) \][/tex]
Step 2: Factorize the numerator and denominator where possible.
- The quadratic [tex]\(x^2 + 10x + 24\)[/tex] can be factored as [tex]\((x + 4)(x + 6)\)[/tex], because [tex]\((x + 4)(x + 6) = x^2 + 10x + 24\)[/tex].
- The quadratic [tex]\(3x^2 + 3x\)[/tex] can be factored as [tex]\(3x(x + 1)\)[/tex], because [tex]\(3x(x + 1) = 3x^2 + 3x\)[/tex].
So, the given expression can be rewritten as:
[tex]\[ \frac{(x + 4)(x + 6)}{3x(x + 1)} \div (x + 6) \][/tex]
Step 3: Change the division to multiplication by the reciprocal of [tex]\((x + 6)\)[/tex].
[tex]\[ \frac{(x + 4)(x + 6)}{3x(x + 1)} \times \frac{1}{x + 6} \][/tex]
Step 4: Simplify the expression by canceling common factors in the numerator and the denominator.
- The [tex]\((x + 6)\)[/tex] in the numerator and denominator cancels out.
[tex]\[ \frac{(x + 4) \cancel{(x + 6)}}{3x(x + 1)} \times \frac{1}{\cancel{x + 6}} = \frac{x + 4}{3x(x + 1)} \][/tex]
The simplest form of the expression is:
[tex]\[ \frac{x + 4}{3x(x + 1)} \][/tex]
So, the final simplified form of the given expression is:
[tex]\[ \frac{x + 4}{3x(x + 1)} \][/tex]
Step 1: Write down the given expression.
[tex]\[ \frac{x^2 + 10x + 24}{3x^2 + 3x} \div (x + 6) \][/tex]
Step 2: Factorize the numerator and denominator where possible.
- The quadratic [tex]\(x^2 + 10x + 24\)[/tex] can be factored as [tex]\((x + 4)(x + 6)\)[/tex], because [tex]\((x + 4)(x + 6) = x^2 + 10x + 24\)[/tex].
- The quadratic [tex]\(3x^2 + 3x\)[/tex] can be factored as [tex]\(3x(x + 1)\)[/tex], because [tex]\(3x(x + 1) = 3x^2 + 3x\)[/tex].
So, the given expression can be rewritten as:
[tex]\[ \frac{(x + 4)(x + 6)}{3x(x + 1)} \div (x + 6) \][/tex]
Step 3: Change the division to multiplication by the reciprocal of [tex]\((x + 6)\)[/tex].
[tex]\[ \frac{(x + 4)(x + 6)}{3x(x + 1)} \times \frac{1}{x + 6} \][/tex]
Step 4: Simplify the expression by canceling common factors in the numerator and the denominator.
- The [tex]\((x + 6)\)[/tex] in the numerator and denominator cancels out.
[tex]\[ \frac{(x + 4) \cancel{(x + 6)}}{3x(x + 1)} \times \frac{1}{\cancel{x + 6}} = \frac{x + 4}{3x(x + 1)} \][/tex]
The simplest form of the expression is:
[tex]\[ \frac{x + 4}{3x(x + 1)} \][/tex]
So, the final simplified form of the given expression is:
[tex]\[ \frac{x + 4}{3x(x + 1)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.