Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

20. Which of the following is equivalent to [tex][tex]$25^{\frac{1}{2}}$[/tex][/tex]?

A. [tex]25 - \frac{2}{7}[/tex]
B. [tex]25 - \frac{7}{2}[/tex]
C. [tex]\sqrt[7]{25^2}[/tex]
D. [tex]\sqrt{25^7}[/tex]


Sagot :

To find the equivalent expression to [tex]\( 25^{\frac{1}{2}} \)[/tex], we need to analyze and simplify each option proposed in the question.

Given that [tex]\( 25^{\frac{1}{2}} \)[/tex] is equal to the square root of 25:

[tex]\[ 25^{\frac{1}{2}} = \sqrt{25} \][/tex]

The square root of 25 is 5:

[tex]\[ \sqrt{25} = 5 \][/tex]

Now, let's evaluate each option given:

1. [tex]\( 25 - \frac{2}{7} \)[/tex]:
This expression represents a subtraction problem:
[tex]\[ 25 - \frac{2}{7} \][/tex]
This is clearly not 5.

2. [tex]\( 25 - \frac{7}{2} \)[/tex]:
Again, this is a subtraction problem:
[tex]\[ 25 - \frac{7}{2} \][/tex]
This will also not result in 5.

3. [tex]\( \sqrt[7]{25^2} \)[/tex]:
This expression represents the seventh root of 25 squared:
[tex]\[ \sqrt[7]{25^2} = (25^2)^{\frac{1}{7}} = 25^{\frac{2}{7}} \][/tex]
This does not simplify to 5.

4. [tex]\( \sqrt{25^7} \)[/tex]:
This can be simplified as follows:
[tex]\[ \sqrt{25^7} = (25^7)^{\frac{1}{2}} = 25^{(7 \times \frac{1}{2})} = 25^{\frac{7}{2}} \][/tex]
This does not simplify to 5.

Given the detailed analysis, we conclude that none of the options are equivalent to:

[tex]\[ 25^{\frac{1}{2}} = \sqrt{25} = 5 \][/tex]

However, there appears to be no correct matching option among the given choices based on the analysis provided. It seems there might be an issue with the options listed in relation to the correct answer derived, [tex]\(25^{\frac{1}{2}} = 5\)[/tex].