Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To simplify the given expression [tex]\(\frac{y^{-2}}{6 y^3}\)[/tex], let's go through the problem step-by-step:
1. Simplify the Exponents:
The numerator of the fraction has [tex]\(y^{-2}\)[/tex], and the denominator has [tex]\(6 y^3\)[/tex]. We need to combine the exponents of [tex]\(y\)[/tex]
[tex]\[ y^{-2} \text{ and } y^3. \][/tex]
When we divide with the same base, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ y^{-2 - 3} = y^{-5}. \][/tex]
2. Combine with the Coefficient:
The coefficient 6 remains in the denominator. Thus, the expression becomes:
[tex]\[ \frac{y^{-5}}{6}. \][/tex]
This can be rewritten as:
[tex]\[ \frac{1}{6} y^{-5}. \][/tex]
3. Express in Standard Form:
To make the expression cleaner and in standard mathematical form, we typically write it as:
[tex]\[ \frac{1}{6 y^5}. \][/tex]
4. Cross-check with the Choices:
Let's compare our simplified result with the given choices:
- [tex]\(\frac{y^7}{6}\)[/tex]
- [tex]\(\frac{1}{6 y^7}\)[/tex]
- [tex]\(\frac{1}{6 y^3}\)[/tex]
- [tex]\(-\frac{1}{6 y^7}\)[/tex]
The simplified form [tex]\(\frac{1}{6 y^5}\)[/tex] doesn't match any of the provided options exactly. Therefore, none of the provided choices is the correct answer.
So, the correct simplified form of [tex]\(\frac{y^{-2}}{6 y^3}\)[/tex] is:
[tex]\[ \frac{1}{6 y^5}. \][/tex]
1. Simplify the Exponents:
The numerator of the fraction has [tex]\(y^{-2}\)[/tex], and the denominator has [tex]\(6 y^3\)[/tex]. We need to combine the exponents of [tex]\(y\)[/tex]
[tex]\[ y^{-2} \text{ and } y^3. \][/tex]
When we divide with the same base, we subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ y^{-2 - 3} = y^{-5}. \][/tex]
2. Combine with the Coefficient:
The coefficient 6 remains in the denominator. Thus, the expression becomes:
[tex]\[ \frac{y^{-5}}{6}. \][/tex]
This can be rewritten as:
[tex]\[ \frac{1}{6} y^{-5}. \][/tex]
3. Express in Standard Form:
To make the expression cleaner and in standard mathematical form, we typically write it as:
[tex]\[ \frac{1}{6 y^5}. \][/tex]
4. Cross-check with the Choices:
Let's compare our simplified result with the given choices:
- [tex]\(\frac{y^7}{6}\)[/tex]
- [tex]\(\frac{1}{6 y^7}\)[/tex]
- [tex]\(\frac{1}{6 y^3}\)[/tex]
- [tex]\(-\frac{1}{6 y^7}\)[/tex]
The simplified form [tex]\(\frac{1}{6 y^5}\)[/tex] doesn't match any of the provided options exactly. Therefore, none of the provided choices is the correct answer.
So, the correct simplified form of [tex]\(\frac{y^{-2}}{6 y^3}\)[/tex] is:
[tex]\[ \frac{1}{6 y^5}. \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.