Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Absolutely, let's solve this problem step by step.
Given:
- The first quartile ([tex]\( Q1 \)[/tex]) is 175.
- The quartile deviation ([tex]\( QD \)[/tex]) is 20.
### Step 1: Calculate the Third Quartile ([tex]\( Q3 \)[/tex])
We know that the quartile deviation (QD) is defined as half the difference between the first and third quartiles. Mathematically, it is represented as:
[tex]\[ QD = \frac{Q3 - Q1}{2} \][/tex]
Rearranging this formula to solve for [tex]\( Q3 \)[/tex]:
[tex]\[ Q3 = Q1 + 2 \cdot QD \][/tex]
Substitute the given values:
[tex]\[ Q3 = 175 + 2 \cdot 20 = 175 + 40 = 215 \][/tex]
So, the third quartile ([tex]\( Q3 \)[/tex]) is 215.
### Step 2: Calculate the Coefficient of Quartile Deviation ([tex]\( CQD \)[/tex])
The coefficient of quartile deviation is defined as the ratio of the quartile deviation to the sum of the first and third quartiles. Mathematically, it is given by:
[tex]\[ CQD = \frac{QD}{Q3 + Q1} \][/tex]
Substitute the given values along with the calculated [tex]\( Q3 \)[/tex]:
[tex]\[ CQD = \frac{20}{215 + 175} = \frac{20}{390} \approx 0.05128205128205128 \][/tex]
So, the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
### Summary
The third quartile ([tex]\( Q3 \)[/tex]) is 215, and the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
Given:
- The first quartile ([tex]\( Q1 \)[/tex]) is 175.
- The quartile deviation ([tex]\( QD \)[/tex]) is 20.
### Step 1: Calculate the Third Quartile ([tex]\( Q3 \)[/tex])
We know that the quartile deviation (QD) is defined as half the difference between the first and third quartiles. Mathematically, it is represented as:
[tex]\[ QD = \frac{Q3 - Q1}{2} \][/tex]
Rearranging this formula to solve for [tex]\( Q3 \)[/tex]:
[tex]\[ Q3 = Q1 + 2 \cdot QD \][/tex]
Substitute the given values:
[tex]\[ Q3 = 175 + 2 \cdot 20 = 175 + 40 = 215 \][/tex]
So, the third quartile ([tex]\( Q3 \)[/tex]) is 215.
### Step 2: Calculate the Coefficient of Quartile Deviation ([tex]\( CQD \)[/tex])
The coefficient of quartile deviation is defined as the ratio of the quartile deviation to the sum of the first and third quartiles. Mathematically, it is given by:
[tex]\[ CQD = \frac{QD}{Q3 + Q1} \][/tex]
Substitute the given values along with the calculated [tex]\( Q3 \)[/tex]:
[tex]\[ CQD = \frac{20}{215 + 175} = \frac{20}{390} \approx 0.05128205128205128 \][/tex]
So, the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
### Summary
The third quartile ([tex]\( Q3 \)[/tex]) is 215, and the coefficient of quartile deviation ([tex]\( CQD \)[/tex]) is approximately 0.0513.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.