Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Match the polynomial to its correct name.

a. [tex]h(x) = 15x + 2[/tex]

b. [tex]f(x) = x^4 - 3x^2 + 9x^2[/tex]

c. [tex]g(x) = -5x^3[/tex]

d. [tex]f(x) = 3x^2 - 5x + 7[/tex]


Sagot :

Let's determine the type of each polynomial by looking at their degrees:

1. Polynomial a [tex]\( h(x) = 15x + 2 \)[/tex]

- This can be written as [tex]\( h(x) = 15x^1 + 2 \)[/tex].
- The degree of this polynomial is 1 (the highest power of [tex]\(x\)[/tex]).
- A polynomial of degree 1 is called a Linear polynomial.

2. Polynomial b [tex]\( f(x) = x^4 - 3x^2 + 9x^2 \)[/tex]

- First, we need to combine like terms: [tex]\( f(x) = x^4 + ( -3x^2 + 9x^2) = x^4 + 6x^2 \)[/tex].
- The degree of this polynomial is 4 (the highest power of [tex]\(x\)[/tex]).
- A polynomial of degree 4 is called a Quartic polynomial.

3. Polynomial c [tex]\( g(x) = -5x^3 \)[/tex]

- The polynomial is already simplified.
- The degree of this polynomial is 3 (the highest power of [tex]\(x\)[/tex]).
- A polynomial of degree 3 is called a Cubic polynomial.

4. Polynomial d [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex]

- This polynomial is already in its simplest form.
- The degree of this polynomial is 2 (the highest power of [tex]\(x\)[/tex]).
- A polynomial of degree 2 is called a Quadratic polynomial.

Therefore, the correct match for each polynomial is as follows:

- a: Linear
- b: Quartic
- c: Cubic
- d: Quadratic
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.