Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To calculate the population of fish in the pond after one and two breeding seasons using the logistic growth model, we will follow these steps:
1. Determine the carrying capacity (K), which is 1200 fish.
2. Set the growth rate (r) at 180%, or as a decimal, 1.8.
3. Initial population (p0) of the pond is given as 400 fish.
Step-by-Step Solution:
### After One Breeding Season:
Using the logistic growth model, we calculate the population after one breeding season.
The logistic equation for one breeding season is:
[tex]\[ p_1 = p_0 + r \cdot p_0 \left(1 - \frac{p_0}{K}\right) \][/tex]
Plugging in the values:
[tex]\[ p_1 = 400 + 1.8 \cdot 400 \left(1 - \frac{400}{1200}\right) \][/tex]
First, simplify the fraction:
[tex]\[ 1 - \frac{400}{1200} = 1 - \frac{1}{3} = \frac{2}{3} \][/tex]
Now, multiply and calculate:
[tex]\[ 1.8 \cdot 400 \cdot \frac{2}{3} = 1.8 \cdot 400 \cdot 0.6667 \approx 480 \][/tex]
Add this to the initial population:
[tex]\[ p_1 = 400 + 480 = 880 \][/tex]
So, the population after one breeding season [tex]\( p_1 \)[/tex] is:
[tex]\[ p_1 = 880 \][/tex]
### After Two Breeding Seasons:
We use the new population [tex]\( p_1 \)[/tex] to find [tex]\( p_2 \)[/tex]:
The logistic equation for the next breeding season is:
[tex]\[ p_2 = p_1 + r \cdot p_1 \left(1 - \frac{p_1}{K}\right) \][/tex]
Plugging in the values:
[tex]\[ p_2 = 880 + 1.8 \cdot 880 \left(1 - \frac{880}{1200}\right) \][/tex]
First, simplify the fraction:
[tex]\[ 1 - \frac{880}{1200} = 1 - \frac{22}{30} = \frac{8}{30} = \frac{4}{15} \][/tex]
Now, multiply and calculate:
[tex]\[ 1.8 \cdot 880 \cdot \frac{4}{15} = 1.8 \cdot 880 \cdot 0.2667 \approx 422.4 \][/tex]
Add this to the population after one breeding season:
[tex]\[ p_2 = 880 + 422.4 = 1302.4 \][/tex]
So, the population after two breeding seasons [tex]\( p_2 \)[/tex] is:
[tex]\[ p_2 = 1302.4 \][/tex]
Therefore, the population of the pond after one breeding season is:
[tex]\[ p_1 = 880 \][/tex]
And after two breeding seasons the population is:
[tex]\[ p_2 = 1302.4 \][/tex]
1. Determine the carrying capacity (K), which is 1200 fish.
2. Set the growth rate (r) at 180%, or as a decimal, 1.8.
3. Initial population (p0) of the pond is given as 400 fish.
Step-by-Step Solution:
### After One Breeding Season:
Using the logistic growth model, we calculate the population after one breeding season.
The logistic equation for one breeding season is:
[tex]\[ p_1 = p_0 + r \cdot p_0 \left(1 - \frac{p_0}{K}\right) \][/tex]
Plugging in the values:
[tex]\[ p_1 = 400 + 1.8 \cdot 400 \left(1 - \frac{400}{1200}\right) \][/tex]
First, simplify the fraction:
[tex]\[ 1 - \frac{400}{1200} = 1 - \frac{1}{3} = \frac{2}{3} \][/tex]
Now, multiply and calculate:
[tex]\[ 1.8 \cdot 400 \cdot \frac{2}{3} = 1.8 \cdot 400 \cdot 0.6667 \approx 480 \][/tex]
Add this to the initial population:
[tex]\[ p_1 = 400 + 480 = 880 \][/tex]
So, the population after one breeding season [tex]\( p_1 \)[/tex] is:
[tex]\[ p_1 = 880 \][/tex]
### After Two Breeding Seasons:
We use the new population [tex]\( p_1 \)[/tex] to find [tex]\( p_2 \)[/tex]:
The logistic equation for the next breeding season is:
[tex]\[ p_2 = p_1 + r \cdot p_1 \left(1 - \frac{p_1}{K}\right) \][/tex]
Plugging in the values:
[tex]\[ p_2 = 880 + 1.8 \cdot 880 \left(1 - \frac{880}{1200}\right) \][/tex]
First, simplify the fraction:
[tex]\[ 1 - \frac{880}{1200} = 1 - \frac{22}{30} = \frac{8}{30} = \frac{4}{15} \][/tex]
Now, multiply and calculate:
[tex]\[ 1.8 \cdot 880 \cdot \frac{4}{15} = 1.8 \cdot 880 \cdot 0.2667 \approx 422.4 \][/tex]
Add this to the population after one breeding season:
[tex]\[ p_2 = 880 + 422.4 = 1302.4 \][/tex]
So, the population after two breeding seasons [tex]\( p_2 \)[/tex] is:
[tex]\[ p_2 = 1302.4 \][/tex]
Therefore, the population of the pond after one breeding season is:
[tex]\[ p_1 = 880 \][/tex]
And after two breeding seasons the population is:
[tex]\[ p_2 = 1302.4 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.