Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, we want to determine the principal amount [tex]\( P \)[/tex] at which both credit cards would result in the same cost over the course of a year when interest is compounded monthly.
Given:
- Credit card A has an APR (Annual Percentage Rate) of [tex]\( 14.3\% \)[/tex] and an annual fee of \[tex]$36. - Credit card B has an APR of \( 17.1\% \) and no annual fee. Step-by-Step Solution: 1. Convert APR to Monthly Interest Rate: - For credit card A: \[ \text{monthly_rate_A} = \frac{14.3\%}{12} = \frac{0.143}{12} \] - For credit card B: \[ \text{monthly_rate_B} = \frac{17.1\%}{12} = \frac{0.171}{12} \] 2. Compute the Effective Annual Rate (EAR): - The effective annual rate for a card with a monthly compounding rate can be calculated using: \[ \text{effective_rate} = (1 + \text{monthly_rate})^{12} \] - For credit card A: \[ \text{effective_rate_A} = \left(1 + \frac{0.143}{12}\right)^{12} \] - For credit card B: \[ \text{effective_rate_B} = \left(1 + \frac{0.171}{12}\right)^{12} \] 3. Formulate the Total Cost Equations: - The total annual cost for card A, including the interest and the annual fee: \[ \text{Total cost for card A} = P \cdot \text{effective_rate_A} -\$[/tex] 36
\]
- The total annual cost for card B, which only includes the interest:
[tex]\[ \text{Total cost for card B} = P \cdot \text{effective_rate_B} \][/tex]
4. Set the Costs Equal to Each Other to Find the Principal:
- To find the principal [tex]\( P \)[/tex] where the costs are the same, set the two equations equal:
[tex]\[ P \cdot \text{effective_rate_A} - 36 = P \cdot \text{effective_rate_B} \][/tex]
Based on these steps, the correct equation that can be used to solve for the principal [tex]\( P \)[/tex] is:
[tex]\[ \boxed{P \cdot(1+0.143 / 12)^{12}-36=P \cdot(1+0.171 / 12)^{12}} \][/tex]
Thus, the correct option is B.
Given:
- Credit card A has an APR (Annual Percentage Rate) of [tex]\( 14.3\% \)[/tex] and an annual fee of \[tex]$36. - Credit card B has an APR of \( 17.1\% \) and no annual fee. Step-by-Step Solution: 1. Convert APR to Monthly Interest Rate: - For credit card A: \[ \text{monthly_rate_A} = \frac{14.3\%}{12} = \frac{0.143}{12} \] - For credit card B: \[ \text{monthly_rate_B} = \frac{17.1\%}{12} = \frac{0.171}{12} \] 2. Compute the Effective Annual Rate (EAR): - The effective annual rate for a card with a monthly compounding rate can be calculated using: \[ \text{effective_rate} = (1 + \text{monthly_rate})^{12} \] - For credit card A: \[ \text{effective_rate_A} = \left(1 + \frac{0.143}{12}\right)^{12} \] - For credit card B: \[ \text{effective_rate_B} = \left(1 + \frac{0.171}{12}\right)^{12} \] 3. Formulate the Total Cost Equations: - The total annual cost for card A, including the interest and the annual fee: \[ \text{Total cost for card A} = P \cdot \text{effective_rate_A} -\$[/tex] 36
\]
- The total annual cost for card B, which only includes the interest:
[tex]\[ \text{Total cost for card B} = P \cdot \text{effective_rate_B} \][/tex]
4. Set the Costs Equal to Each Other to Find the Principal:
- To find the principal [tex]\( P \)[/tex] where the costs are the same, set the two equations equal:
[tex]\[ P \cdot \text{effective_rate_A} - 36 = P \cdot \text{effective_rate_B} \][/tex]
Based on these steps, the correct equation that can be used to solve for the principal [tex]\( P \)[/tex] is:
[tex]\[ \boxed{P \cdot(1+0.143 / 12)^{12}-36=P \cdot(1+0.171 / 12)^{12}} \][/tex]
Thus, the correct option is B.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.