Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the distance between the points [tex]\((1, -2)\)[/tex] and [tex]\((2, 4)\)[/tex], we use the distance formula, which is given by:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
First, identify the coordinates [tex]\((x_1, y_1) = (1, -2)\)[/tex] and [tex]\((x_2, y_2) = (2, 4)\)[/tex].
Now, compute the differences in the [tex]\(x\)[/tex]-coordinates and [tex]\(y\)[/tex]-coordinates:
[tex]\[ (x_2 - x_1) = 2 - 1 = 1 \][/tex]
[tex]\[ (y_2 - y_1) = 4 - (-2) = 6 \][/tex]
Next, square these differences:
[tex]\[ (x_2 - x_1)^2 = 1^2 = 1 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 6^2 = 36 \][/tex]
Now, sum the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 1 + 36 = 37 \][/tex]
Finally, take the square root of this sum to find the distance:
[tex]\[ \text{Distance} = \sqrt{37} \approx 6.082762530298219 \][/tex]
Given the expressions in the options:
- Option A. [tex]\((1+2)^2 + (2-4)^2\)[/tex] is incorrect because it incorrectly sums [tex]\(x\)[/tex]-coordinates and does not use the correct difference.
- Option C. [tex]\((1 - 2)^2 + (-2 - 4)^2\)[/tex] misses the square root and thus does not give the distance.
- Option D. [tex]\(\sqrt{(1+2)^2 + (2 - 4)^2}\)[/tex] incorrectly sums [tex]\(x\)[/tex] coordinates.
The correct option is B, which matches the distance formula:
[tex]\[ \sqrt{(1 - 2)^2 + (-2 - 4)^2} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\sqrt{(1 - 2)^2 + (-2 - 4)^2}} \][/tex]
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
First, identify the coordinates [tex]\((x_1, y_1) = (1, -2)\)[/tex] and [tex]\((x_2, y_2) = (2, 4)\)[/tex].
Now, compute the differences in the [tex]\(x\)[/tex]-coordinates and [tex]\(y\)[/tex]-coordinates:
[tex]\[ (x_2 - x_1) = 2 - 1 = 1 \][/tex]
[tex]\[ (y_2 - y_1) = 4 - (-2) = 6 \][/tex]
Next, square these differences:
[tex]\[ (x_2 - x_1)^2 = 1^2 = 1 \][/tex]
[tex]\[ (y_2 - y_1)^2 = 6^2 = 36 \][/tex]
Now, sum the squared differences:
[tex]\[ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 1 + 36 = 37 \][/tex]
Finally, take the square root of this sum to find the distance:
[tex]\[ \text{Distance} = \sqrt{37} \approx 6.082762530298219 \][/tex]
Given the expressions in the options:
- Option A. [tex]\((1+2)^2 + (2-4)^2\)[/tex] is incorrect because it incorrectly sums [tex]\(x\)[/tex]-coordinates and does not use the correct difference.
- Option C. [tex]\((1 - 2)^2 + (-2 - 4)^2\)[/tex] misses the square root and thus does not give the distance.
- Option D. [tex]\(\sqrt{(1+2)^2 + (2 - 4)^2}\)[/tex] incorrectly sums [tex]\(x\)[/tex] coordinates.
The correct option is B, which matches the distance formula:
[tex]\[ \sqrt{(1 - 2)^2 + (-2 - 4)^2} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\sqrt{(1 - 2)^2 + (-2 - 4)^2}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.