Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex], we can use Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for any set of reactions that add up to the overall reaction. Here are the steps to find the enthalpy change:
1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]
2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]
3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]
4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]
5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
1. Identify the given thermochemical equations and their enthalpies:
- Equation 1: [tex]\(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_1 = -571 \text{kJ}\)[/tex]
- Equation 2: [tex]\(2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2\)[/tex], [tex]\(\Delta H_2 = -566 \text{kJ}\)[/tex]
- Equation 3: [tex]\(2\text{CH}_3\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 4\text{H}_2\text{O}\)[/tex], [tex]\(\Delta H_3 = -1430 \text{kJ}\)[/tex]
2. Manipulate the given equations to derive the target reaction:
- First, start with the reverse of the third equation:
[tex]\[ 2\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{CH}_3\text{OH} + 3\text{O}_2 \quad (\Delta H_3' = +1430 \text{kJ}) \][/tex]
- Next, take half of the second equation:
[tex]\[ \text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 \quad \left(\frac{\Delta H_2}{2} = -283 \text{kJ}\right) \][/tex]
3. Combine the above steps:
- Use the first equation as it is:
[tex]\[ 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (\Delta H_1 = -571 \text{kJ}) \][/tex]
4. Find the overall enthalpy change. According to Hess's Law, sum up the enthalpies:
- For the reverse of equation 3:
[tex]\[ \Delta H_3' = +1430 \text{kJ} \][/tex]
- For half of equation 2:
[tex]\[ \frac{\Delta H_2}{2} = -283 \text{kJ} \][/tex]
- For half of equation 1:
[tex]\[ \frac{\Delta H_1}{2} = \frac{-571}{2} = -285.5 \text{kJ} \][/tex]
5. Sum the enthalpies:
- The total enthalpy change for the reaction:
[tex]\[ \Delta H_{\text{total}} = \left(\frac{\Delta H_1}{2}\right) + \left(\frac{\Delta H_2}{2}\right) + \left(\frac{\Delta H_3}{2}\right) \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{total}} = -285.5 \text{kJ} + (-283 \text{kJ}) + 715 \text{kJ} = 146.5 \text{kJ} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \)[/tex] is [tex]\( \boxed{+146.5 \text{kJ}} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.