Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's address each part of the question step-by-step.
### [a] Writing down the column matrix [tex]\( N \)[/tex] representing the cost of each type of smoothie:
The costs for the smoothies are given as:
- Small portion costs \[tex]$4.75 - Large portion costs \$[/tex]5.50
We can represent these costs in a column matrix [tex]\( N \)[/tex]:
[tex]\[ N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
### [b] Given matrix [tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex], evaluate [tex]\( MN \)[/tex]:
First, let's re-write the given matrices [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex]
[tex]\( N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \)[/tex]
Now, to find [tex]\( MN \)[/tex], we need to perform matrix multiplication:
[tex]\[ MN = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
To perform the multiplication, multiply each element of the rows of [tex]\( M \)[/tex] by the corresponding element of the column [tex]\( N \)[/tex] and then sum these products for each entry in the resulting matrix:
[tex]\[ \begin{aligned} MN &= \begin{pmatrix} (6 \times 4.75) + (3 \times 5.50) \\ (4 \times 4.75) + (7 \times 5.50) \end{pmatrix} \\ &= \begin{pmatrix} 28.5 + 16.5 \\ 19 + 38.5 \end{pmatrix} \\ &= \begin{pmatrix} 45.0 \\ 57.5 \end{pmatrix} \][/tex]
### [c] Explanation of the numbers in the answer to [b]:
The numbers in the resulting matrix from part [b] [tex]\( MN \)[/tex] represent the total sales revenue for each type of smoothie.
- The first element (45.0) represents the total revenue generated from the sales of strawberry smoothies.
- The second element (57.5) represents the total revenue generated from the sales of mango smoothies.
By breaking it down:
- For strawberry smoothies: [tex]\( 6 \times \$4.75 \)[/tex] from small portions plus [tex]\( 3 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$45.0. - For mango smoothies: \( 4 \times \$[/tex]4.75 \) from small portions plus [tex]\( 7 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$57.5. So, we find that the total revenue from strawberry smoothies is \$[/tex]45.0 and from mango smoothies is \$57.5.
### [a] Writing down the column matrix [tex]\( N \)[/tex] representing the cost of each type of smoothie:
The costs for the smoothies are given as:
- Small portion costs \[tex]$4.75 - Large portion costs \$[/tex]5.50
We can represent these costs in a column matrix [tex]\( N \)[/tex]:
[tex]\[ N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
### [b] Given matrix [tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex], evaluate [tex]\( MN \)[/tex]:
First, let's re-write the given matrices [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\( M = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \)[/tex]
[tex]\( N = \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \)[/tex]
Now, to find [tex]\( MN \)[/tex], we need to perform matrix multiplication:
[tex]\[ MN = \begin{pmatrix} 6 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} 4.75 \\ 5.50 \end{pmatrix} \][/tex]
To perform the multiplication, multiply each element of the rows of [tex]\( M \)[/tex] by the corresponding element of the column [tex]\( N \)[/tex] and then sum these products for each entry in the resulting matrix:
[tex]\[ \begin{aligned} MN &= \begin{pmatrix} (6 \times 4.75) + (3 \times 5.50) \\ (4 \times 4.75) + (7 \times 5.50) \end{pmatrix} \\ &= \begin{pmatrix} 28.5 + 16.5 \\ 19 + 38.5 \end{pmatrix} \\ &= \begin{pmatrix} 45.0 \\ 57.5 \end{pmatrix} \][/tex]
### [c] Explanation of the numbers in the answer to [b]:
The numbers in the resulting matrix from part [b] [tex]\( MN \)[/tex] represent the total sales revenue for each type of smoothie.
- The first element (45.0) represents the total revenue generated from the sales of strawberry smoothies.
- The second element (57.5) represents the total revenue generated from the sales of mango smoothies.
By breaking it down:
- For strawberry smoothies: [tex]\( 6 \times \$4.75 \)[/tex] from small portions plus [tex]\( 3 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$45.0. - For mango smoothies: \( 4 \times \$[/tex]4.75 \) from small portions plus [tex]\( 7 \times \$5.50 \)[/tex] from large portions give a total revenue of \[tex]$57.5. So, we find that the total revenue from strawberry smoothies is \$[/tex]45.0 and from mango smoothies is \$57.5.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.