Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the range of the function [tex]\( f(x) = |x| + 5 \)[/tex], let's analyze the behavior of the function step-by-step.
1. Understand the Absolute Value Function:
- The absolute value function [tex]\( |x| \)[/tex] returns the non-negative value of [tex]\( x \)[/tex].
- For any real number [tex]\( x \)[/tex], [tex]\( |x| \geq 0 \)[/tex].
2. Evaluate the Function:
- The function [tex]\( f(x) = |x| + 5 \)[/tex] is the sum of [tex]\( |x| \)[/tex] and 5.
- Since [tex]\( |x| \geq 0 \)[/tex], we have [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex].
3. Minimum Value:
- To find the minimum value of [tex]\( f(x) \)[/tex], consider the point where [tex]\( |x| = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( |x| = 0 \)[/tex]. So, [tex]\( f(0) = 0 + 5 = 5 \)[/tex].
- Hence, [tex]\( f(x) \)[/tex] attains its minimum value of 5.
4. Range of [tex]\( f(x) \)[/tex]:
- Since [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex], the function can take any value starting from 5 and increasing without bound.
- Hence, the range of [tex]\( f(x) \)[/tex] includes all real numbers greater than or equal to 5.
Based on the above analysis, the correct option from the given list is:
[tex]\[ R: \{ f(x) \in \mathbb{R} \mid f(x) \geq 5 \} \][/tex]
Therefore, the second option is the correct one.
1. Understand the Absolute Value Function:
- The absolute value function [tex]\( |x| \)[/tex] returns the non-negative value of [tex]\( x \)[/tex].
- For any real number [tex]\( x \)[/tex], [tex]\( |x| \geq 0 \)[/tex].
2. Evaluate the Function:
- The function [tex]\( f(x) = |x| + 5 \)[/tex] is the sum of [tex]\( |x| \)[/tex] and 5.
- Since [tex]\( |x| \geq 0 \)[/tex], we have [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex].
3. Minimum Value:
- To find the minimum value of [tex]\( f(x) \)[/tex], consider the point where [tex]\( |x| = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( |x| = 0 \)[/tex]. So, [tex]\( f(0) = 0 + 5 = 5 \)[/tex].
- Hence, [tex]\( f(x) \)[/tex] attains its minimum value of 5.
4. Range of [tex]\( f(x) \)[/tex]:
- Since [tex]\( f(x) = |x| + 5 \geq 5 \)[/tex], the function can take any value starting from 5 and increasing without bound.
- Hence, the range of [tex]\( f(x) \)[/tex] includes all real numbers greater than or equal to 5.
Based on the above analysis, the correct option from the given list is:
[tex]\[ R: \{ f(x) \in \mathbb{R} \mid f(x) \geq 5 \} \][/tex]
Therefore, the second option is the correct one.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.