Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equation represents a proportional relationship with a constant of proportionality equal to -10, we need to understand the form of such a relationship. In mathematics, a proportional relationship can be described by an equation of the form:
[tex]\[ y = kx \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality. Here, we require [tex]\( k \)[/tex] to be -10. This means our equation should look like:
[tex]\[ y = -10x \][/tex]
Now, let's match this structure against the given options:
1. [tex]\( y = x - 10 \)[/tex]
This equation is not in the form [tex]\( y = kx \)[/tex] because there is a subtraction operation, not a multiplication by a constant. It represents a linear relationship but not a proportional one with the required constant.
2. [tex]\( y = \frac{x}{-10} \)[/tex]
This equation can be rewritten as [tex]\( y = \frac{1}{-10} x \)[/tex]. Here, the constant of proportionality is [tex]\(\frac{1}{-10}\)[/tex], not -10, so it does not satisfy our condition.
3. [tex]\( y = -10x \)[/tex]
This equation is in the form [tex]\( y = kx \)[/tex] with [tex]\( k = -10 \)[/tex]. Hence, it correctly represents a proportional relationship with the constant of proportionality equal to -10.
4. [tex]\( y = -10 \)[/tex]
This equation describes a horizontal line where [tex]\( y \)[/tex] is constantly -10, regardless of [tex]\( x \)[/tex]. It does not fit the form [tex]\( y = kx \)[/tex].
Thus, the correct equation that represents a proportional relationship with a constant of proportionality equal to -10 is:
[tex]\[ \boxed{3} \][/tex]
[tex]\[ y = kx \][/tex]
where [tex]\( k \)[/tex] is the constant of proportionality. Here, we require [tex]\( k \)[/tex] to be -10. This means our equation should look like:
[tex]\[ y = -10x \][/tex]
Now, let's match this structure against the given options:
1. [tex]\( y = x - 10 \)[/tex]
This equation is not in the form [tex]\( y = kx \)[/tex] because there is a subtraction operation, not a multiplication by a constant. It represents a linear relationship but not a proportional one with the required constant.
2. [tex]\( y = \frac{x}{-10} \)[/tex]
This equation can be rewritten as [tex]\( y = \frac{1}{-10} x \)[/tex]. Here, the constant of proportionality is [tex]\(\frac{1}{-10}\)[/tex], not -10, so it does not satisfy our condition.
3. [tex]\( y = -10x \)[/tex]
This equation is in the form [tex]\( y = kx \)[/tex] with [tex]\( k = -10 \)[/tex]. Hence, it correctly represents a proportional relationship with the constant of proportionality equal to -10.
4. [tex]\( y = -10 \)[/tex]
This equation describes a horizontal line where [tex]\( y \)[/tex] is constantly -10, regardless of [tex]\( x \)[/tex]. It does not fit the form [tex]\( y = kx \)[/tex].
Thus, the correct equation that represents a proportional relationship with a constant of proportionality equal to -10 is:
[tex]\[ \boxed{3} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.