Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which value of [tex]\( x \)[/tex] is in the solution set of the inequality [tex]\( 8x - 6 > 12 + 2x \)[/tex], we follow these steps:
1. Move all [tex]\( x \)[/tex] terms to one side of the inequality:
Start with the given inequality:
[tex]\[ 8x - 6 > 12 + 2x \][/tex]
Subtract [tex]\( 2x \)[/tex] from both sides to collect the [tex]\( x \)[/tex]-terms on one side:
[tex]\[ 8x - 2x - 6 > 12 \][/tex]
Simplify:
[tex]\[ 6x - 6 > 12 \][/tex]
2. Isolate the [tex]\( x \)[/tex]-term:
Add 6 to both sides to remove the constant term on the left:
[tex]\[ 6x - 6 + 6 > 12 + 6 \][/tex]
Simplify:
[tex]\[ 6x > 18 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Divide both sides by 6:
[tex]\[ \frac{6x}{6} > \frac{18}{6} \][/tex]
Simplify:
[tex]\[ x > 3 \][/tex]
4. Determine which provided values of [tex]\( x \)[/tex] satisfy the inequality:
The inequality [tex]\( x > 3 \)[/tex] means [tex]\( x \)[/tex] must be greater than 3. We need to check which of the provided values satisfy this inequality: -1, 0, 3, and 5.
- For [tex]\( x = -1 \)[/tex]: [tex]\(-1\)[/tex] is not greater than 3.
- For [tex]\( x = 0 \)[/tex]: [tex]\(0\)[/tex] is not greater than 3.
- For [tex]\( x = 3 \)[/tex]: [tex]\(3\)[/tex] is not greater than 3; it's equal to 3.
- For [tex]\( x = 5 \)[/tex]: [tex]\(5\)[/tex] is greater than 3.
Therefore, the value of [tex]\( x \)[/tex] that is in the solution set of the inequality [tex]\( 8x - 6 > 12 + 2x \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
1. Move all [tex]\( x \)[/tex] terms to one side of the inequality:
Start with the given inequality:
[tex]\[ 8x - 6 > 12 + 2x \][/tex]
Subtract [tex]\( 2x \)[/tex] from both sides to collect the [tex]\( x \)[/tex]-terms on one side:
[tex]\[ 8x - 2x - 6 > 12 \][/tex]
Simplify:
[tex]\[ 6x - 6 > 12 \][/tex]
2. Isolate the [tex]\( x \)[/tex]-term:
Add 6 to both sides to remove the constant term on the left:
[tex]\[ 6x - 6 + 6 > 12 + 6 \][/tex]
Simplify:
[tex]\[ 6x > 18 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Divide both sides by 6:
[tex]\[ \frac{6x}{6} > \frac{18}{6} \][/tex]
Simplify:
[tex]\[ x > 3 \][/tex]
4. Determine which provided values of [tex]\( x \)[/tex] satisfy the inequality:
The inequality [tex]\( x > 3 \)[/tex] means [tex]\( x \)[/tex] must be greater than 3. We need to check which of the provided values satisfy this inequality: -1, 0, 3, and 5.
- For [tex]\( x = -1 \)[/tex]: [tex]\(-1\)[/tex] is not greater than 3.
- For [tex]\( x = 0 \)[/tex]: [tex]\(0\)[/tex] is not greater than 3.
- For [tex]\( x = 3 \)[/tex]: [tex]\(3\)[/tex] is not greater than 3; it's equal to 3.
- For [tex]\( x = 5 \)[/tex]: [tex]\(5\)[/tex] is greater than 3.
Therefore, the value of [tex]\( x \)[/tex] that is in the solution set of the inequality [tex]\( 8x - 6 > 12 + 2x \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.