Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for the set [tex]\(\{(x, y) \in \mathbb{R}^2 \mid 4y - 7 = 0\}\)[/tex], we need to find the values of [tex]\(y\)[/tex] that satisfy the given equation and determine the corresponding [tex]\(x\)[/tex] values, where [tex]\(x\)[/tex] can be any real number.
1. Given Equation:
[tex]\[ 4y - 7 = 0 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
[tex]\[ 4y - 7 = 0 \][/tex]
To isolate [tex]\(y\)[/tex], add 7 to both sides of the equation:
[tex]\[ 4y = 7 \][/tex]
Now, divide both sides by 4:
[tex]\[ y = \frac{7}{4} \][/tex]
3. Interpret the solution:
The equation [tex]\(4y - 7 = 0\)[/tex] defines a horizontal line in the [tex]\(xy\)[/tex]-plane where [tex]\(y\)[/tex] is always [tex]\(\frac{7}{4}\)[/tex]. This means for any real number [tex]\(x\)[/tex], [tex]\(y\)[/tex] will always be [tex]\(\frac{7}{4}\)[/tex].
4. Form the solution set:
The solution can be expressed as:
[tex]\[ \{(x, y) \in \mathbb{R}^2 \mid y = \frac{7}{4}\} \][/tex]
Since [tex]\(x\)[/tex] can be any real number, the solution set includes all pairs [tex]\((x, 1.75)\)[/tex], where [tex]\(1.75\)[/tex] is the decimal representation of [tex]\(\frac{7}{4}\)[/tex].
Therefore, the solution set is:
[tex]\[ (x, 1.75) \quad \text{for any } x \in \mathbb{R} \][/tex]
1. Given Equation:
[tex]\[ 4y - 7 = 0 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
[tex]\[ 4y - 7 = 0 \][/tex]
To isolate [tex]\(y\)[/tex], add 7 to both sides of the equation:
[tex]\[ 4y = 7 \][/tex]
Now, divide both sides by 4:
[tex]\[ y = \frac{7}{4} \][/tex]
3. Interpret the solution:
The equation [tex]\(4y - 7 = 0\)[/tex] defines a horizontal line in the [tex]\(xy\)[/tex]-plane where [tex]\(y\)[/tex] is always [tex]\(\frac{7}{4}\)[/tex]. This means for any real number [tex]\(x\)[/tex], [tex]\(y\)[/tex] will always be [tex]\(\frac{7}{4}\)[/tex].
4. Form the solution set:
The solution can be expressed as:
[tex]\[ \{(x, y) \in \mathbb{R}^2 \mid y = \frac{7}{4}\} \][/tex]
Since [tex]\(x\)[/tex] can be any real number, the solution set includes all pairs [tex]\((x, 1.75)\)[/tex], where [tex]\(1.75\)[/tex] is the decimal representation of [tex]\(\frac{7}{4}\)[/tex].
Therefore, the solution set is:
[tex]\[ (x, 1.75) \quad \text{for any } x \in \mathbb{R} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.