Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To prove that [tex]\(\|\cdot\|\)[/tex] defined as [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] for [tex]\((a, b) \in V = \mathbb{R}^2\)[/tex] is a norm, we need to verify that it satisfies the three properties of a norm:
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.