Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the first term [tex]\(a\)[/tex] and the common difference [tex]\(d\)[/tex] of an arithmetic series given that the sum of the first 710 terms is 27.5 and the 10th term is 5, we follow a systematic approach:
### Step 1: Define the Formulas
1. The sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of an arithmetic series can be given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
2. The [tex]\(n\)[/tex]th term of an arithmetic series can be defined as:
[tex]\[ a_n = a + (n-1)d \][/tex]
### Step 2: Substitute the Known Values
Given:
- [tex]\(n = 710\)[/tex]
- [tex]\(S_{710} = 27.5\)[/tex]
- The 10th term [tex]\(a_{10} = 5\)[/tex]
### Step 3: Set Up the Equations
1. Using the given sum of the first 710 terms:
[tex]\[ 27.5 = \frac{710}{2} (2a + 709d) \][/tex]
Simplify this equation:
[tex]\[ 27.5 = 355 (2a + 709d) \][/tex]
[tex]\[ 2a + 709d = \frac{27.5}{355} \][/tex]
2. For the 10th term:
[tex]\[ a + 9d = 5 \][/tex]
### Step 4: Solve the System of Equations
We now have two equations:
1. [tex]\(2a + 709d = \frac{27.5}{355}\)[/tex]
2. [tex]\(a + 9d = 5\)[/tex]
We solve these equations simultaneously.
### Step 5: Find the Values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]
From the equations, solving for [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
1. From the second equation:
[tex]\[ a = 5 - 9d \][/tex]
2. Substitute [tex]\(a = 5 - 9d\)[/tex] into the first equation:
[tex]\[ 2(5 - 9d) + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 10 - 18d + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 691d + 10 = \frac{27.5}{355} \][/tex]
[tex]\[ 691d = \frac{27.5}{355} - 10 \][/tex]
[tex]\[ d = \frac{\frac{27.5}{355} - 10}{691} \][/tex]
Thus:
[tex]\[ d = -0.0143596746906912 \][/tex]
And substituting [tex]\(d\)[/tex] back into [tex]\(a = 5 - 9d\)[/tex]:
[tex]\[ a = 5 - 9 \times (-0.0143596746906912) \][/tex]
[tex]\[ a = 5.12923707221622 \][/tex]
### Conclusion
The first term [tex]\(a\)[/tex] is approximately [tex]\(5.12923707221622\)[/tex] and the common difference [tex]\(d\)[/tex] is approximately [tex]\(-0.0143596746906912\)[/tex].
### Step 1: Define the Formulas
1. The sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of an arithmetic series can be given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
2. The [tex]\(n\)[/tex]th term of an arithmetic series can be defined as:
[tex]\[ a_n = a + (n-1)d \][/tex]
### Step 2: Substitute the Known Values
Given:
- [tex]\(n = 710\)[/tex]
- [tex]\(S_{710} = 27.5\)[/tex]
- The 10th term [tex]\(a_{10} = 5\)[/tex]
### Step 3: Set Up the Equations
1. Using the given sum of the first 710 terms:
[tex]\[ 27.5 = \frac{710}{2} (2a + 709d) \][/tex]
Simplify this equation:
[tex]\[ 27.5 = 355 (2a + 709d) \][/tex]
[tex]\[ 2a + 709d = \frac{27.5}{355} \][/tex]
2. For the 10th term:
[tex]\[ a + 9d = 5 \][/tex]
### Step 4: Solve the System of Equations
We now have two equations:
1. [tex]\(2a + 709d = \frac{27.5}{355}\)[/tex]
2. [tex]\(a + 9d = 5\)[/tex]
We solve these equations simultaneously.
### Step 5: Find the Values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]
From the equations, solving for [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
1. From the second equation:
[tex]\[ a = 5 - 9d \][/tex]
2. Substitute [tex]\(a = 5 - 9d\)[/tex] into the first equation:
[tex]\[ 2(5 - 9d) + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 10 - 18d + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 691d + 10 = \frac{27.5}{355} \][/tex]
[tex]\[ 691d = \frac{27.5}{355} - 10 \][/tex]
[tex]\[ d = \frac{\frac{27.5}{355} - 10}{691} \][/tex]
Thus:
[tex]\[ d = -0.0143596746906912 \][/tex]
And substituting [tex]\(d\)[/tex] back into [tex]\(a = 5 - 9d\)[/tex]:
[tex]\[ a = 5 - 9 \times (-0.0143596746906912) \][/tex]
[tex]\[ a = 5.12923707221622 \][/tex]
### Conclusion
The first term [tex]\(a\)[/tex] is approximately [tex]\(5.12923707221622\)[/tex] and the common difference [tex]\(d\)[/tex] is approximately [tex]\(-0.0143596746906912\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.