Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the inequality [tex]\( |2x - 4| \leq 8 \)[/tex], we need to consider the definition of absolute value, which states that [tex]\( |a| \leq b \)[/tex] if and only if [tex]\( -b \leq a \leq b \)[/tex].
Given [tex]\( |2x - 4| \leq 8 \)[/tex], we can write this as:
[tex]\[ -8 \leq 2x - 4 \leq 8 \][/tex]
We will solve this compound inequality in two steps.
### Step 1: Solving the left inequality
[tex]\[ -8 \leq 2x - 4 \][/tex]
Add 4 to both sides:
[tex]\[ -8 + 4 \leq 2x - 4 + 4 \][/tex]
[tex]\[ -4 \leq 2x \][/tex]
Divide both sides by 2:
[tex]\[ -\frac{4}{2} \leq \frac{2x}{2} \][/tex]
[tex]\[ -2 \leq x \][/tex]
### Step 2: Solving the right inequality
[tex]\[ 2x - 4 \leq 8 \][/tex]
Add 4 to both sides:
[tex]\[ 2x - 4 + 4 \leq 8 + 4 \][/tex]
[tex]\[ 2x \leq 12 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{2x}{2} \leq \frac{12}{2} \][/tex]
[tex]\[ x \leq 6 \][/tex]
### Combining the results
Combining the two parts of the compound inequality, we get:
[tex]\[ -2 \leq x \leq 6 \][/tex]
Therefore, the solution to [tex]\( |2x - 4| \leq 8 \)[/tex] is:
[tex]\[ x \geq -2 \text{ and } x \leq 6 \][/tex]
This matches option B.
So, the answer is:
B. [tex]\( x \geq -2 \text{ and } x \leq 6 \)[/tex]
Given [tex]\( |2x - 4| \leq 8 \)[/tex], we can write this as:
[tex]\[ -8 \leq 2x - 4 \leq 8 \][/tex]
We will solve this compound inequality in two steps.
### Step 1: Solving the left inequality
[tex]\[ -8 \leq 2x - 4 \][/tex]
Add 4 to both sides:
[tex]\[ -8 + 4 \leq 2x - 4 + 4 \][/tex]
[tex]\[ -4 \leq 2x \][/tex]
Divide both sides by 2:
[tex]\[ -\frac{4}{2} \leq \frac{2x}{2} \][/tex]
[tex]\[ -2 \leq x \][/tex]
### Step 2: Solving the right inequality
[tex]\[ 2x - 4 \leq 8 \][/tex]
Add 4 to both sides:
[tex]\[ 2x - 4 + 4 \leq 8 + 4 \][/tex]
[tex]\[ 2x \leq 12 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{2x}{2} \leq \frac{12}{2} \][/tex]
[tex]\[ x \leq 6 \][/tex]
### Combining the results
Combining the two parts of the compound inequality, we get:
[tex]\[ -2 \leq x \leq 6 \][/tex]
Therefore, the solution to [tex]\( |2x - 4| \leq 8 \)[/tex] is:
[tex]\[ x \geq -2 \text{ and } x \leq 6 \][/tex]
This matches option B.
So, the answer is:
B. [tex]\( x \geq -2 \text{ and } x \leq 6 \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.