Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's break down the given function [tex]\( f(t) = 1.8(1.2)^t \)[/tex] to understand its parts and answer the questions step-by-step:
1. Initial Population:
The term [tex]\( 1.8 \)[/tex] in the function [tex]\( f(t) \)[/tex] represents the initial number of caribou in hundreds because at [tex]\( t = 0 \)[/tex],
[tex]\[ f(0) = 1.8 \cdot (1.2)^0 = 1.8 \cdot 1 = 1.8 \text{ (hundreds of caribou)}. \][/tex]
Therefore, the initial number of caribou in the tundra is [tex]\( 1.8 \times 100 = 180 \)[/tex] caribou.
2. Time Unit for Population Increase:
The exponent [tex]\( t \)[/tex] represents the time in years. Hence, the population factor increase happens every 1 year.
3. Factor of Population Increase:
The base [tex]\( 1.2 \)[/tex] in the function indicates the population increases by a factor of [tex]\( 1.2 \)[/tex] each year.
By filling in these values in the context of the given function:
Initially, the tundra has [tex]\( \boxed{180} \)[/tex] caribou, and every [tex]\( \boxed{1 \text{ year}} \)[/tex], the number of caribou increases by a factor of [tex]\( \boxed{1.2} \)[/tex].
1. Initial Population:
The term [tex]\( 1.8 \)[/tex] in the function [tex]\( f(t) \)[/tex] represents the initial number of caribou in hundreds because at [tex]\( t = 0 \)[/tex],
[tex]\[ f(0) = 1.8 \cdot (1.2)^0 = 1.8 \cdot 1 = 1.8 \text{ (hundreds of caribou)}. \][/tex]
Therefore, the initial number of caribou in the tundra is [tex]\( 1.8 \times 100 = 180 \)[/tex] caribou.
2. Time Unit for Population Increase:
The exponent [tex]\( t \)[/tex] represents the time in years. Hence, the population factor increase happens every 1 year.
3. Factor of Population Increase:
The base [tex]\( 1.2 \)[/tex] in the function indicates the population increases by a factor of [tex]\( 1.2 \)[/tex] each year.
By filling in these values in the context of the given function:
Initially, the tundra has [tex]\( \boxed{180} \)[/tex] caribou, and every [tex]\( \boxed{1 \text{ year}} \)[/tex], the number of caribou increases by a factor of [tex]\( \boxed{1.2} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.