Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To calculate the amount of heat generated for each cylinder height, we need to consider the mass of water ([tex]\(m_w\)[/tex]), the mass of the cylinder ([tex]\(m_c\)[/tex]), and the specific heat capacities of water and the cylinder material. Additionally, we need to use the temperature changes ([tex]\(\Delta T\)[/tex]) provided in the table.
The formula for calculating the heat generated ([tex]\(\Delta H\)[/tex]) when there is a temperature change is:
[tex]\[ \Delta H = m \cdot c \cdot \Delta T \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(c\)[/tex] is the specific heat capacity, and [tex]\(\Delta T\)[/tex] is the change in temperature.
Given:
- Mass of water: [tex]\(m_w = 1.0 \, \text{kg}\)[/tex]
- Mass of the cylinder: [tex]\(m_c = 5.0 \, \text{kg}\)[/tex]
- Specific heat capacity of water: [tex]\(c_w = 4.18 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
- Specific heat capacity of the cylinder: [tex]\(c_c = 0.9 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
The temperature changes ([tex]\(\Delta T\)[/tex]) for different heights are provided in the table:
- [tex]\(\Delta T\)[/tex] for 100 m: [tex]\(1.17 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 200 m: [tex]\(2.34 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 500 m: [tex]\(5.86 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 1000 m: [tex]\(11.72 \, \text{°C}\)[/tex]
Let's calculate the heat generated for each height:
1. For 100 meters:
[tex]\[ \Delta H_{100} = m_w \cdot c_w \cdot \Delta T_{100} + m_c \cdot c_c \cdot \Delta T_{100} \][/tex]
[tex]\[ \Delta H_{100} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{100} = 4.8906 \, \text{kJ} + 5.265 \, \text{kJ} = 10.2 \, \text{kJ} \ (\text{rounded}) \][/tex]
2. For 200 meters:
[tex]\[ \Delta H_{200} = m_w \cdot c_w \cdot \Delta T_{200} + m_c \cdot c_c \cdot \Delta T_{200} \][/tex]
[tex]\[ \Delta H_{200} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{200} = 9.7812 \, \text{kJ} + 10.53 \, \text{kJ} = 20.3 \, \text{kJ} \ (\text{rounded}) \][/tex]
3. For 500 meters:
[tex]\[ \Delta H_{500} = m_w \cdot c_w \cdot \Delta T_{500} + m_c \cdot c_c \cdot \Delta T_{500} \][/tex]
[tex]\[ \Delta H_{500} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{500} = 24.5148 \, \text{kJ} + 26.37 \, \text{kJ} = 50.9 \, \text{kJ} \ (\text{rounded}) \][/tex]
4. For 1000 meters:
[tex]\[ \Delta H_{1000} = m_w \cdot c_w \cdot \Delta T_{1000} + m_c \cdot c_c \cdot \Delta T_{1000} \][/tex]
[tex]\[ \Delta H_{1000} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{1000} = 48.9896 \, \text{kJ} + 52.74 \, \text{kJ} = 101.7 \, \text{kJ} \ (\text{rounded}) \][/tex]
Final answers:
- For 100 meters: [tex]\(10.2 \, \text{kJ}\)[/tex]
- For 200 meters: [tex]\(20.3 \, \text{kJ}\)[/tex]
- For 500 meters: [tex]\(50.9 \, \text{kJ}\)[/tex]
- For 1000 meters: [tex]\(101.7 \, \text{kJ}\)[/tex]
Therefore, the amount of heat generated for each height is as follows:
[tex]\[ \begin{array}{l} 100 \, \text{m}: 10.2 \, \text{kJ} \\ 200 \, \text{m}: 20.3 \, \text{kJ} \\ 500 \, \text{m}: 50.9 \, \text{kJ} \\ 1000 \, \text{m}: 101.7 \, \text{kJ} \end{array} \][/tex]
The formula for calculating the heat generated ([tex]\(\Delta H\)[/tex]) when there is a temperature change is:
[tex]\[ \Delta H = m \cdot c \cdot \Delta T \][/tex]
where [tex]\(m\)[/tex] is the mass, [tex]\(c\)[/tex] is the specific heat capacity, and [tex]\(\Delta T\)[/tex] is the change in temperature.
Given:
- Mass of water: [tex]\(m_w = 1.0 \, \text{kg}\)[/tex]
- Mass of the cylinder: [tex]\(m_c = 5.0 \, \text{kg}\)[/tex]
- Specific heat capacity of water: [tex]\(c_w = 4.18 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
- Specific heat capacity of the cylinder: [tex]\(c_c = 0.9 \, \text{kJ/(kg} \cdot \text{°C)}\)[/tex]
The temperature changes ([tex]\(\Delta T\)[/tex]) for different heights are provided in the table:
- [tex]\(\Delta T\)[/tex] for 100 m: [tex]\(1.17 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 200 m: [tex]\(2.34 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 500 m: [tex]\(5.86 \, \text{°C}\)[/tex]
- [tex]\(\Delta T\)[/tex] for 1000 m: [tex]\(11.72 \, \text{°C}\)[/tex]
Let's calculate the heat generated for each height:
1. For 100 meters:
[tex]\[ \Delta H_{100} = m_w \cdot c_w \cdot \Delta T_{100} + m_c \cdot c_c \cdot \Delta T_{100} \][/tex]
[tex]\[ \Delta H_{100} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 1.17 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{100} = 4.8906 \, \text{kJ} + 5.265 \, \text{kJ} = 10.2 \, \text{kJ} \ (\text{rounded}) \][/tex]
2. For 200 meters:
[tex]\[ \Delta H_{200} = m_w \cdot c_w \cdot \Delta T_{200} + m_c \cdot c_c \cdot \Delta T_{200} \][/tex]
[tex]\[ \Delta H_{200} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 2.34 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{200} = 9.7812 \, \text{kJ} + 10.53 \, \text{kJ} = 20.3 \, \text{kJ} \ (\text{rounded}) \][/tex]
3. For 500 meters:
[tex]\[ \Delta H_{500} = m_w \cdot c_w \cdot \Delta T_{500} + m_c \cdot c_c \cdot \Delta T_{500} \][/tex]
[tex]\[ \Delta H_{500} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 5.86 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{500} = 24.5148 \, \text{kJ} + 26.37 \, \text{kJ} = 50.9 \, \text{kJ} \ (\text{rounded}) \][/tex]
4. For 1000 meters:
[tex]\[ \Delta H_{1000} = m_w \cdot c_w \cdot \Delta T_{1000} + m_c \cdot c_c \cdot \Delta T_{1000} \][/tex]
[tex]\[ \Delta H_{1000} = 1.0 \, \text{kg} \cdot 4.18 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} + 5.0 \, \text{kg} \cdot 0.9 \, \text{kJ/(kg} \cdot \text{°C)} \cdot 11.72 \, \text{°C} \][/tex]
[tex]\[ \Delta H_{1000} = 48.9896 \, \text{kJ} + 52.74 \, \text{kJ} = 101.7 \, \text{kJ} \ (\text{rounded}) \][/tex]
Final answers:
- For 100 meters: [tex]\(10.2 \, \text{kJ}\)[/tex]
- For 200 meters: [tex]\(20.3 \, \text{kJ}\)[/tex]
- For 500 meters: [tex]\(50.9 \, \text{kJ}\)[/tex]
- For 1000 meters: [tex]\(101.7 \, \text{kJ}\)[/tex]
Therefore, the amount of heat generated for each height is as follows:
[tex]\[ \begin{array}{l} 100 \, \text{m}: 10.2 \, \text{kJ} \\ 200 \, \text{m}: 20.3 \, \text{kJ} \\ 500 \, \text{m}: 50.9 \, \text{kJ} \\ 1000 \, \text{m}: 101.7 \, \text{kJ} \end{array} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.