Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which radioactive substance Juliet is measuring, we need to calculate the half-life of the substance based on the information provided.
Juliet started with [tex]\(200 \, \text{g}\)[/tex] of the substance in 1997. We can use the measured amounts in subsequent years to calculate the half-life.
In 2002 (5 years later), she had [tex]\(100 \, \text{g}\)[/tex] of the substance left. This suggests that the substance halved in 5 years.
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 5 years} = 100 \, \text{g} \][/tex]
Using the half-life formula:
[tex]\[ \text{Amount remaining} = \text{Initial amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time elapsed}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ 100 = 200 \times \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
To solve for the half-life:
[tex]\[ \frac{100}{200} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{2} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This equation confirms that:
[tex]\[ \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This simply means:
[tex]\[ \frac{5 \text{ years}}{\text{half-life}} = 1 \][/tex]
Thus:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
We can verify this calculation with the measurement from 2007 (10 years later from 1997), where [tex]\(50 \, \text{g}\)[/tex] of the substance remained:
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 10 years} = 50 \, \text{g} \][/tex]
Using the half-life formula again:
[tex]\[ 50 = 200 \times \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ \frac{50}{200} = \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{4} = \left(\frac{1}{2}\right)^{2} \][/tex]
Since:
[tex]\[ \left(\frac{1}{2}\right)^{2} = \frac{1}{2 \times 2} = \frac{1}{4} \][/tex]
This confirms that:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
Comparing this calculated half-life with the given half-lives of various isotopes:
- Rubidium-91: 58.4 seconds
- Iodine-131: 8 days
- Cobalt-60: 5 years
- Carbon-14: 5730 years
- Cesium-135: [tex]\(2.3 \times 10^6\)[/tex] years
The half-life that matches our calculated half-life of 5 years is that of Cobalt-60.
Therefore, the substance Juliet is most likely measuring is Cobalt-60.
Juliet started with [tex]\(200 \, \text{g}\)[/tex] of the substance in 1997. We can use the measured amounts in subsequent years to calculate the half-life.
In 2002 (5 years later), she had [tex]\(100 \, \text{g}\)[/tex] of the substance left. This suggests that the substance halved in 5 years.
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 5 years} = 100 \, \text{g} \][/tex]
Using the half-life formula:
[tex]\[ \text{Amount remaining} = \text{Initial amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time elapsed}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ 100 = 200 \times \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
To solve for the half-life:
[tex]\[ \frac{100}{200} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{2} = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This equation confirms that:
[tex]\[ \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^{\frac{5 \text{ years}}{\text{half-life}}} \][/tex]
This simply means:
[tex]\[ \frac{5 \text{ years}}{\text{half-life}} = 1 \][/tex]
Thus:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
We can verify this calculation with the measurement from 2007 (10 years later from 1997), where [tex]\(50 \, \text{g}\)[/tex] of the substance remained:
[tex]\[ \text{Initial amount} = 200 \, \text{g} \][/tex]
[tex]\[ \text{Amount left in 10 years} = 50 \, \text{g} \][/tex]
Using the half-life formula again:
[tex]\[ 50 = 200 \times \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
Given:
[tex]\[ \frac{50}{200} = \left(\frac{1}{2}\right)^{\frac{10 \text{ years}}{\text{half-life}}} \][/tex]
[tex]\[ \frac{1}{4} = \left(\frac{1}{2}\right)^{2} \][/tex]
Since:
[tex]\[ \left(\frac{1}{2}\right)^{2} = \frac{1}{2 \times 2} = \frac{1}{4} \][/tex]
This confirms that:
[tex]\[ \text{half-life} = 5 \text{ years} \][/tex]
Comparing this calculated half-life with the given half-lives of various isotopes:
- Rubidium-91: 58.4 seconds
- Iodine-131: 8 days
- Cobalt-60: 5 years
- Carbon-14: 5730 years
- Cesium-135: [tex]\(2.3 \times 10^6\)[/tex] years
The half-life that matches our calculated half-life of 5 years is that of Cobalt-60.
Therefore, the substance Juliet is most likely measuring is Cobalt-60.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.