Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Show that [tex]$v=\log \left(x^2+y^2\right)$[/tex] is harmonic. Find a function [tex]$u$[/tex] such that [tex]u + iv[/tex] is analytic.

Sagot :

Let's solve the problem step by step.

### Determine if [tex]\( v(x, y) = \log(x^2 + y^2) \)[/tex] is Harmonic

To determine if [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic, we need to compute the Laplacian of [tex]\( v \)[/tex]:
[tex]\[ \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \][/tex]

First, we find the partial derivatives of [tex]\( v \)[/tex].

#### First Partial Derivatives:
[tex]\[ v = \log(x^2 + y^2) \][/tex]
[tex]\[ \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]

#### Second Partial Derivatives:
[tex]\[ \frac{\partial^2 v}{\partial x^2} \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) \][/tex]
Using the quotient rule:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{(2(x^2 + y^2) - 2x \cdot 2x)}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2 - 2x^2)}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} \][/tex]

Similarly for [tex]\( \frac{\partial^2 v}{\partial y^2} \)[/tex]:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) \][/tex]
Using the quotient rule:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{(2(x^2 + y^2) - 2y \cdot 2y)}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2 - 2y^2)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} \][/tex]

Now, summing these up for the Laplacian:
[tex]\[ \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} + \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} = 0 \][/tex]

Since [tex]\( \Delta v = 0 \)[/tex], [tex]\( v(x, y) = \log(x^2 + y^2) \)[/tex] is harmonic.

### Finding a Function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is Analytic

We need to find [tex]\( u(x, y) \)[/tex] such that [tex]\( u + iv \)[/tex] is an analytic function. For this, the Cauchy-Riemann equations must be satisfied:
[tex]\[ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \][/tex]
[tex]\[ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \][/tex]

We already found:
[tex]\[ \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]

Using the Cauchy-Riemann equations:
[tex]\[ \frac{\partial u}{\partial x} = \frac{2y}{x^2 + y^2} \][/tex]
[tex]\[ \frac{\partial u}{\partial y} = -\frac{2x}{x^2 + y^2} \][/tex]

We can integrate these equations to find [tex]\( u \)[/tex]:

To find [tex]\( u \)[/tex]:
[tex]\[ u = \int \frac{\partial u}{\partial x} \, dx \][/tex]
[tex]\[ u = \int \frac{2y}{x^2 + y^2} \, dx \][/tex]

Here, [tex]\( y \)[/tex] is treated as a constant:
[tex]\[ u = 2y \int \frac{1}{x^2 + y^2} \, dx \][/tex]

Recognizing the standard integral:
[tex]\[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan \left( \frac{x}{a} \right) \][/tex]

Thus:
[tex]\[ u = 2y \cdot \frac{1}{y} \arctan \left( \frac{x}{y} \right) = 2 \arctan \left( \frac{x}{y} \right) \][/tex]

But we also need to integrate with respect to [tex]\( y \)[/tex]:
[tex]\[ \int -\frac{2x}{x^2 + y^2} \, dy \][/tex]

This is solved similarly:
[tex]\[ u = -2x \arctan \left( \frac{y}{x} \right) \][/tex]

Combining these, we arrive at the form:
[tex]\[ u - i \arctan \left( \frac{x}{y} \right) + i \arctan \left( \frac{y}{x} \right) \][/tex]

This leads to a logarithmic form:
[tex]\[ u + iv = i \log \left( \frac{x - iy}{x + iy}, \right) \][/tex]

Thus:
[tex]\[ u + iv = -I \log(x - iy) + I \log(x + iy) + I \log(-I x + y) - I \log(I x + y) \][/tex]

This is the analytic function combining [tex]\( u \)[/tex] and [tex]\( iv \)[/tex].